Appendix A

Nomenclature

\(A_i \) – internal heat transfer area (m²)
\(A_o \) – external heat transfer area (m²)
\(A_s \) – cross flow area of shell side (m²)
\(A_t \) – cross sectional area of tube side (m²)
\(B_s \) – baffle spacing (m)

\(C_{p_{ws}}, C_{p_{wt}} \) – specific heat of cold water in shell side and tube side (J/kg K)

\(C_{p_{fs}}, C_{p_{ft}} \) – specific heat of pure liquid in shell side and tube side (J/kg K)

\(C_{p_{ts}}, C_{p_{tt}} \) – specific heat of process stream in shell and tube side (J/kg K)

\(C_{p_{hs}}, C_{p_{ht}} \) – specific heat of hot water in shell and tube side (J/kg K)

\(D_i \) – inner diameter of the tube (m)
\(D_o \) – outer diameter of the tube (m)
\(D_s \) – inner diameter of shell (m)
\(D_e \) – equivalent diameter (m)

\(E \) – thermal effectiveness of process stream/pure liquid

\(F \) – heat capacity ratio

\(h_i, h_o \) - inside and outside heat transfer coefficients (W/m²K)

\(h_{1s} \) - heat transfer coefficient of pure liquid/pure water in shell side (W/m²K)

\(h_{1t} \) - heat transfer coefficient of pure liquid/pure water in tube side (W/m²K)

\(h_{2s} \) - two-phase heat transfer coefficient in shell side (W/m²K)

\(h_{2t} \) - two-phase heat transfer coefficient in tube side (W/m²K)
k_{ws}, k_{wt} – thermal conductivity of cold water in shell side and tube side (W/mK)

k_{hs}, k_{ht} – thermal conductivity of pure liquid in shell side and tube side (W/mK)

k_{ts}, k_{tt} – thermal conductivity of process stream in shell and tube side (W/mK)

L – length of tube (m)

m – mass flow rate of process stream (kg/s)

m_{hs} – mass flow rate of hot water in shell side (kg/s)

m_{ht} – mass flow rate of hot water in tube side (kg/s)

m_{ht}, m_{fs} – mass flow rate of single-phase fluid in tube side and shell side (kg/s)

m_{wt}, m_{ws} – mass flow rate of cold water in tube side and shell side (kg/s)

m_{ht}, m_{fs} – mass flow rate of two-phase fluid in tube side and shell side (kg/s)

N_t – number of tubes

N_P - number of passes

P_t – tube pitch (m)

Q_{hs}, Q_{ht} – heat flow rate of hot water in shell and tube side (W)

Q_{ss}, Q_{st} – heat flow rate of single phase fluid in shell and tube side (W)

Q_{st}, Q_{tt} – heat flow rate of process stream in shell and tube side (W)

T_{h1}- inlet temperature of hot water in tube side (K)

T_{h2}- outlet temperature of hot water in tube side (K)

T_{c1}- inlet temperature of cold fluid in shell side (K)

T_{c2}- outlet temperature of cold fluid in shell side (K)

T_{w1} & T_{w2}- wall temperatures (K)

T_{hi} - inlet temperature of hot water (K)

T_{ho} - outlet temperature of hot water (K)
\(T_{ci} \) - inlet temperature of cold fluid (K)
\(T_{co} \) - outlet temperature of cold fluid (K)
\(U \) - overall heat transfer coefficient (W/m\(^2\)K)
\(u_s/u_t \) – ratio of shell side velocity to tube side velocity
\(u_{ss}, u_{tt} \) – velocity of process stream in shell side and tube side (m/s)
\(V_{fs}, V_{ft} \) – volumetric flow rate of pure liquid in shell side and tube side (m\(^3\)/s)
\(V_{fs}, V_{ft} \) – volumetric flow rate of two-phase fluid in shell side and tube side (m\(^3\)/s)
\(V_{hs}, V_{ht} \) – volumetric flow rate of hot water in shell and tube side (m\(^3\)/s)
\(V_{ws}, V_{wt} \) – volumetric flow rate of cold water in shell and tube side (m\(^3\)/s)

Greek letters

\(\Delta T \) - temperature difference in process side (K)
\(\Delta T_{ln} \) - logarithmic mean temperature (K)
\(\mu_{ws}, \mu_{wt} \) – density of cold water in shell side and tube side (kg/ms)
\(\mu_{fs}, \mu_{ft} \) – density of pure liquid in shell side and tube side (kg/ms)
\(\mu_{ts}, \mu_{tt} \) – density of process stream in shell and tube side (kg/ms)
\(\rho_{ws}, \rho_{wt} \) – density of cold water in shell side and tube side (kg/m\(^3\))
\(\rho_{fs}, \rho_{ft} \) – density of pure liquid in shell side and tube side (kg/m\(^3\))
\(\rho_{ts}, \rho_{tt} \) – density of process stream in shell and tube side (kg/m\(^3\))
\(\rho_{hs}, \rho_{ht} \) – density of hot water in shell side and tube side (kg/m\(^3\))
\(\Phi_{Lt}, \Phi_{Ls} \) – Modified two-phase multiplier for tube side and shell side
\(\chi^2_{tt}, \chi^2_{ts} \) – L-M parameter for tube side and shell side