List of figures

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Crystal structure of a host–guest complex.</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Parameters of molecules (left) and supramolecular systems (right) that define core properties (centre).</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Examples of electrostatic interactions: (a) ion-ion interaction in tetrabutylammonium chloride; (b) ion-dipole interaction in the sodium complex of [15] crown-5; (c) dipole-dipole interactions in acetone.</td>
<td>6</td>
</tr>
<tr>
<td>1.4</td>
<td>(a) A carbonyl accepting a hydrogen bond from a secondary amine donor and (b) a schematic representation.</td>
<td>7</td>
</tr>
<tr>
<td>1.5</td>
<td>(a) Primary and secondary hydrogen bond interactions between guanine and cytosine base-pairs in DNA and (b) a schematic representation.</td>
<td>7</td>
</tr>
<tr>
<td>1.6</td>
<td>(a) Six or more water molecules can fit around K⁺ whereas (b) there is space for only two benzene molecules.</td>
<td>8</td>
</tr>
<tr>
<td>1.7</td>
<td>A London interaction between two argon atoms.</td>
<td>9</td>
</tr>
<tr>
<td>1.8</td>
<td>(A) Chemical structure of α-CD, β-CD and γ-CD (B) The internal cavity width for α-CD, β-CD and γ-CD.</td>
<td>11</td>
</tr>
<tr>
<td>1.9</td>
<td>Structure of α-CD and schematic representations of hydrophilic and hydrophobic regions.</td>
<td>15</td>
</tr>
<tr>
<td>1.10</td>
<td>Schematic illustration of dissolution of a pesticide and its CD complex.</td>
<td>22</td>
</tr>
<tr>
<td>1.11</td>
<td>Guest-cyclodextrin complex formation.</td>
<td>23</td>
</tr>
<tr>
<td>1.12</td>
<td>Structure of molinate and benthiocarb.</td>
<td>41</td>
</tr>
<tr>
<td>1.13</td>
<td>Structure of methyl parathion and chlorothion.</td>
<td>42</td>
</tr>
<tr>
<td>1.14</td>
<td>Structure of N,N-diethyl-meta-toluamide and 3-hexen-1-ol.</td>
<td>44</td>
</tr>
<tr>
<td>2.1</td>
<td>¹H NMR spectrum of isoproturon.</td>
<td>74</td>
</tr>
</tbody>
</table>
2.2. FT-IR spectrum of isoproturon.

2.3. 1H NMR spectrum of 2,4,6-TNP.

2.4. FT-IR spectrum of 2,4,6-trinitrophenol.

2.5. 1H NMR spectrum of bifenox.

2.6. FT-IR spectrum of bifenox.

3.1. Structure of isoproturon.

3.2. Absorption spectra of 1.0×10^{-3} M IPU of IPU with β-CD.

3.3. Benesi - Hildebrand plot for IPU-β-CD 1:1 complex.

3.4. FT-IR spectrum of (a) β-CD; (b) IPU and (c) IPU-β-CD (1:1) complex.

3.5. 1H NMR spectrum of (a) β-CD; (b) IPU and (c) IPU-β-CD (1:1) complex.

3.6. X-ray diffraction pattern of (a) β-CD; (b) IPU and (c) IPU-β-CD (1:1) complex.

3.7. DSC thermogram of (a) β-CD; (b) IPU and (c) IPU-β-CD complex.

3.9. Absorption spectra of 1.0×10^{-3} M IPU with HP-β-CD.

3.11. FT-IR spectra of (a) HP-β-CD; (b) IPU and (c) IPU-HP-β-CD (1:1) complex.

3.12. 1H NMR spectrum of (a) HPβ-CD; (b) IPU and (c) IPU-HPβ-CD (1:1) complex.

3.13. X-Ray diffraction pattern of (a) HP-β-CD; (b) IPU and (c) IPU-HP-β-CD (1:1) complex.

3.14. DSC thermogram of (a) HP-β-CD; (b) IPU and (c) IPU-HP-β-CD (1:1) complex.

4.1. Structure of 2,4,6- trinitrophenol.
4.2. Absorption spectra of 1×10^{-3} M 2,4,6-TNP (a) at pH 4 (b) pH 7 and (c) pH 9.

4.3. Absorption spectra of 2,4,6-TNP with β-CD at pH 4.

4.4. Absorption spectra of 2,4,6-TNP with β-CD at pH 9.

4.5. Benesi-Hildebrand plot 2,4,6-TNP-β-CD (1:1) complex (a) pH 4 (b) pH 9.

4.6. FT-IR spectra of (a) β-CD; (b) 2,4,6-TNP and (c) 2,4,6-TNP-β-CD (1:1) complex.

4.7. 1H NMR spectra of (a) β-CD; (b) 2,4,6-TNP and (c) 2,4,6-TNP-β-CD (1:1) complex.

5.1. Structure of bifenox.

5.2. Chemical degradation of bifenox.

5.3. Absorption spectra of bifenox with different concentrations of CDs.

5.4. Benesi-Hildebrand plot for 1:1 complex of BX with CDs.

5.5. Job’s plot for the complexes of bifenox with α-, β- and γ-CDs.

5.6. FT-IR spectra of 1:1 complex of bifenox with α-, β- and γ-CDs: (a) CD; (b) bifenox and c) complex.

5.7. 1H NMR spectra of 1:1 complexes of bifenox with α-, β- and γ-CDs: (a) CD; (b) bifenox and c) complex.

6.1. (a) β-CD (b) Oxidised β-CD in alkaline solution (c) AgNPs stabilized by oxidized β-CD and (d) hydrogen-bonding interactions between oxidized β-CD after drying.

6.2. UV-visible absorption spectrum of β-CD capped silver nanoparticles.

6.3. XRD pattern of β-CD capped silver nanoparticles.

6.4. TEM images of the silver nanoparticles.

6.5. Absorption spectra of silver nanoparticle with bifenox.