TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACKNOWLEDGEMENTS</td>
<td>(i)</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>(ii-iii)</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>(iv)</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>(v-vi)</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>(vii)</td>
</tr>
<tr>
<td>1.</td>
<td>INTRODUCTION</td>
<td>1-3</td>
</tr>
<tr>
<td>2.</td>
<td>REVIEW OF LITERATURE</td>
<td>4-44</td>
</tr>
<tr>
<td></td>
<td>2.1 General introduction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.2 Morphology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.3 Molecular identification and differentiation among Colletotrichum spp</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.4 Environment condition for growth of pathogen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.4.1 Culture studies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.4.2 In vitro culture</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5 Mode of infection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5.1 Anthracnose caused by Colletotrichum gloeosporioides</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5.1.1 Leaves</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5.1.2 Flowers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5.1.3 In small fruits</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5.1.3.1 Unripe fruit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5.1.3.2 In fruit close to ripening</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5.1.3.3 In post harvest fruit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5.1.4 Crown</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5.2 Life cycle of disease</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5.3 Modes of penetration</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5.3.1 Penetration without appressoria</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5.3.2 Appressoria formation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5.4 Host range and crop loss</td>
<td></td>
</tr>
</tbody>
</table>
2.5.4.1 National status
2.5.4.2 International status

2.5.5 Genes involved in host defence and in pathogenesis of Colletotrichum gloeosporioides
 2.5.5.1 Genes involved in host defense
 2.5.5.2 Gene involved in pathogenesis

2.6 Mycovirus

2.7 Transformation methods
 2.7.1 Electroporation
 2.7.2 Combination of PEG (for chemical transformation) and electroporation (for DNA transformation)
 2.7.3 Agrobacterium tumefaciens mediated transfer
 2.7.4 REMI (restriction enzyme mediated integration)

2.8 Infection in humans

2.9 Management of C. gloeosporioides
 2.9.1 Non-chemical control
 2.9.2 Chemical control
 2.9.3 Biological control with examples

3. MATERIALS AND METHODS
3.1 Media, reagent, kits, enzymes

3.2 Media
 3.2.1 Potato dextrose agar
 3.2.2 Potato dextrose broth
 3.2.3 Oatmeal agar
 3.2.4 Malt extract agar
 3.2.5 Malt extract broth
 3.2.6 Lima bean agar

3.3 Reagents for DNA isolation
 3.3.1 Extraction buffer
 3.3.1.1 1M Tris HCl
3.3.1.2 0.5M EDTA
3.3.1.3 5M NaCl
3.3.1.4 10% SDS
3.3.1.5 T.E buffer

3.4 Reagents for plasmid isolation
3.4.1 Solution I (resuspension buffer)
 3.4.1.1 1M Glucose
 3.4.1.2 1M Tris HCl (pH-8.0)
 3.4.1.3 0.5M EDTA
3.4.2 Solution II (Lysis buffer)
 3.4.2.1 10% SDS
 3.4.2.2 10N NaOH
3.4.3 Solution III (Neutralization buffer)

3.5 Reagents for REMI
3.5.1 1.8M KCL
3.5.2 60% PEG
3.5.3 STC (pH 8.0)
3.5.4 3XKTC (pH- 8.0)
3.5.5 PEG/KTC
3.5.6 Enzyme solution
3.5.7 Regeneration media

3.6 Reagent for southern hybridization
3.6.1 Depurination solution
3.6.2 Denaturation solution
 3.6.2.1 10N NaOH
 3.6.2.2 5M NaCl
3.6.3 Neutralization solution
 3.6.3.1 1M Tris Cl
 3.6.3.2 5M NaCl
3.6.4 SSC 20X (sodium saline citrate)
 3.6.4.1 5M NaCl
3.6.4.2 1M Tri sodium citrate

3.6.5 Low stringency buffer
 3.6.5.1 20X SSC
 3.6.5.2 10% SDS

3.6.6 High stringency buffer
 3.6.6.1 20X SSC
 3.6.6.2 10% SDS

3.7 Reagents for agarose gel electrophoresis
 3.7.1 Sample loading dye (6X)
 3.7.2 50XTAE
 3.7.3 Ethidium bromide

3.8 Sample collection
 3.8.1 Isolation of *C. gloeosporioides*
 3.8.2 Morphological study of isolates
 3.8.3 DNA isolation, confirmation of isolates, sequencing of amplified product and blast analysis

 3.8.3.1 DNA isolation
 3.8.3.1.1 Agarose gel electrophoresis
 3.8.3.2 Confirmation of isolates
 3.8.3.2.1 Agarose gel electrophoresis
 3.8.3.3 Purification of amplified product
 3.8.3.4 Sequencing of PCR product
 3.8.3.5 Blast analysis of obtained sequence

3.8.4 Sporulation study

3.9 Generation of random mutants
 3.9.1 Vector construction, fungal transformation, isolate selection and single spore culture

 3.9.1.1 Plasmid isolation
 a) Thermo scientific Gene Jet Plasmid mini prep kit k0502 kit (Fermentas, USA) protocol
 b) Manual method
3.9.1.2 Agarose gel electrophoresis

3.9.1.2 Fungal transformation and isolate select-ion
 3.9.1.2.1 Restriction digestion of pCSN43
 3.9.1.2.2 Protoplast preparation
 3.9.1.2.3 Fungal transformation
 3.9.1.2.4 Purification of fungal colonies using single spores

3.10 Confirmation of mutants
 3.10.1 DNA extraction from mutants
 3.10.2 Confirmation of mutants with *Colletotrichum gloeosporioides* ITS region specific primer
 3.10.3 Confirmation of mutants with hygromycin primer specific for hygromycin resistance gene
 3.10.3.1 Purification of PCR product
 3.10.3.2 Sequencing of purified product
 3.10.3.3 Blast analysis of obtained sequence
 3.10.4 Confirmation of mutants by southern hybridization
 3.10.4.1 Digestion of mutant DNA
 3.10.4.2 Agarose gel electrophoresis
 3.10.4.3 Transfer of digested DNA to hybond nylon membrane
 3.10.4.4 DNA labeling
 3.10.4.5 Hybridization
 3.10.4.6 Stripping of blot

3.11 Morphological study
 3.11.1 Growth phenotype
 3.11.2 Spore germination
 3.11.3 Spore penetration

3.12 Pathogenesis assay on detached leaves, fruits and vegetables

3.13 Identification of tagged genes in mutant deficient in causing infection by inverse PCR
 3.13.1 Digestion and purification of mutant genomic DNA
3.13.2 Ligation and purification of purified digested genomic DNA

3.13.3 Inverse PCR
 1) First set of primers
 2) Second set of primers
 3) Third set of primers
 3.13.3.1 Purification of amplified PCR product
 3.13.3.2 Sequencing of amplified product
 3.13.3.3 Blast analysis of obtained sequence

4. RESULT AND DISCUSSIONS

4.1 Sample collection
4.2 Morphological studies
4.3 DNA isolation
 4.3.1 Confirmations of isolates
 4.3.2 Sequencing
 4.3.3 Blast analysis
4.4 Sporulation study
4.5 Generation of random mutants
 4.5.1 Plasmid isolation
 4.5.1.2 Restriction digestion of plasmid
 4.5.2 Protoplast production and transformation
 4.5.3 Single spore culture
4.5.4 Confirmation of mutants
 4.5.4.1 DNA isolation
 4.5.4.2 Confirmation with ITS region specific primers of
 C. gloeosporioides
 4.5.4.3 Confirmation with hygromycin primer
 4.5.4.4 Sequencing and sequence analysis
 4.5.4.5 Blast analysis
 4.5.4.6 Confirmation with southern hybridization
 4.5.4.6.1 Digestion of genomic DNA of mutants
 4.5.4.6.2 Transfer of digested genomic DNA to
nylon membrane

4.5.4.6.3 Digested DNA on nylon membrane

4.6 Morphological studies of the mutants

4.6.1 Growth phenotype

4.6.1.1 On PDA plates

4.6.1.2 On PDA+ hygromycin (50µg/ml hygromycin)

4.6.2 Spore germination

4.6.3 Spore penetration

4.6.4 Comparison of germination and penetration

4.7 Pathogenesis assay on various detached leaves, fruits and vegetables

4.7.1 Pathogenesis assay on apple leaves

4.7.2 Pathogenesis assay on guava leaves

4.7.3 Pathogenesis assay on kiwi leaves

4.7.4 Pathogenesis assay on mango leaves

4.7.5 Pathogenesis assay on peach leaves

4.7.6 Pathogenesis assay on apple (outer surface)

4.7.7 Pathogenesis assay on apple (inner surface)

4.7.8 Pathogenesis assay on banana (outer surface)

4.7.9 Pathogenesis assay on banana (inner surface)

4.7.10 Pathogenesis assay on guava (outer surface)

4.7.11 Pathogenesis assay on guava (inner surface)

4.7.12 Pathogenesis assay on orange (inner surface)

4.7.13 Pathogenesis assay on capsicum (outer surface)

4.8 Inverse PCR

4.8.1 Digestion and purification of mutant genomic DNA

4.8.2 Recircularisation and purification of digested genomic DNA

4.8.3 Inverse PCR

4.8.4 Amplification of tagged genes from mutant strains H4 and H7

4.8.5 Purification of amplified fragment of mutants strains
H4 and H7

4.8.6 Sequencing and sequence analysis

5. SUMMARY AND CONCLUSION 114-117
 5.1 Summary
 5.2 Conclusion

6. REFERENCES 118-137
 PUBLICATIONS