CONTENT

List of Figures

| x |

List of Tables

| xvii |

1 GENERAL INTRODUCTION & LITERATURE SURVEY

1.1 Introduction

1.2 History and definition of nanotechnology

- **1.2.1 Present status of nanotechnology**
 - 1.2.1.1 Advantages of nano-sized additions
 - 1.2.1.2 Fields of nanotechnology
 - 1.2.1.3 Approaches

- **1.2.2 Chemistry of nano materials**

- **1.2.3 Types of nano material**
 - 1.2.3.1 Ultrathin films (Two-Dimensional Nanostructures)
 - 1.2.3.2 Nanoparticles (Zero-Dimensional Nanostructures)
 - 1.2.3.3 Nanowires (One-Dimensional Nanostructures)
 - 1.2.3.4 Supramolecular assemblies

- **1.2.4 General properties of nanoparticles**

1.3 Synthesis of nano structured materials

- **1.3.1 Physical Methods**
- **1.3.2 Chemical Methods**
- **1.3.3 General physico-chemical methods for preparation of nano-sized material**
- **1.3.4 Stabilization of Nanoparticles**

1.4 Characterization techniques for nanostructure

- **1.4.1 Nano material Characterization by Microscopy**
 - 1.4.1.1 Scanning Electron Microscopy (SEM)
 - 1.4.1.2 Energy Dispersive X-ray Analysis (EDX)
 - 1.4.1.3 Transmission Electron Microscopy (TEM)
1.4.1.4. High Resolution Transmission Electron Microscopy (HRTEM)

1.4.1.5. Atomic Force Microscope (AFM)

1.4.1.6. Scanning Tunneling Microscopy (STM)

1.4.2 Nano materials Characterization by Spectroscopy

1.4.2.1. Raman Spectroscopy

1.4.2.2. Ultraviolet-Visible (UV-VIS) Spectroscopy

1.4.3 Characterization of Nano materials by X-ray

1.4.3.1. Wide Angle X-Ray Diffraction

1.4.3.2. X-Ray Photoelectron Spectroscopy (XPS)

1.4.3.3. Particle Size Analyzer

1.5 Application techniques

1.5.1 Filament or Fibre Preparation Stage

1.5.2 Finishing stage

1.5.3 Garment processing stage

1.5.4 Characterization of polymer nano composites

1.6 Nano textile related research

1.7 Application fields and commercial products

1.7.1 Nano engineered textiles

1.7.1.1 Conductive textiles

1.7.1.2 Reinforced textiles

1.7.1.3 Antibacterial textiles

1.7.1.4 Self cleaning textiles

1.7.1.5 Hydrophilic textiles

1.7.1.6 Dyeability

1.7.1.7 UV—blocking textiles

1.7.1.8 Flame retardant textiles

1.7.1.9 Controlled release of active agents, drugs or fragrances

1.7.1.10 Insulating textiles

1.7.1.11 Luminescence textiles

1.8 Economical and environmental aspects

1.9 Perspective and aims of the work

1.10 References
SYNTHESIS & CHARACTERIZATION OF METALLIC NANOPARTICLES

2.1 Introduction

2.2 Materials

- **2.2.1 Equipments**
- **2.2.2 Reaction chamber design and used**

2.3 Experimental methods

- **2.3.1 Preparation of copper nano colloids by chemical reduction technique**
 - **2.3.1.1 Preparation technique**
 - **2.3.1.2 Stabilization study of copper nanoparticles**
 - **2.3.1.3 In-situ synthesis & stabilization technique**
 - **2.3.1.4 Characterization of copper nanoparticles**
- **2.3.2 Preparation of silver nano colloids by chemical reduction technique**
 - **2.3.2.1 Preparation technique**
 - **2.3.2.2 Stabilization study of silver nano colloidal particles**
 - **2.3.2.3 In-situ synthesis and stabilization technique**
 - **2.3.2.4 Characterization of silver nano colloidal particles**
- **2.3.3 Preparation of zinc nano colloids by chemical reduction technique**
 - **2.3.3.1 Preparation technique**
 - **2.3.3.2 Stabilization study of zinc nano colloidal particles**
 - **2.3.3.3 In-situ synthesis and stabilization technique**
 - **2.3.3.4 Characterization of zinc nano colloidal particles**

2.4 Results and Discussion

- **2.4.1 Synthesis of colloidal copper nanoparticles**
 - **2.4.1.1 Studies on stability of synthesized copper nano colloidal solution in atmospheric condition**
 - **2.4.1.2 Stability with different capping agents**
 - **2.4.1.3 Characterizations of synthesized and TSC stabilized copper nanoparticles**
 - **2.4.1.4 In-situ formation and stabilization of copper nanoparticles on polyester fabric**
- **2.4.2 Synthesis of colloidal silver nanoparticles**
 - **2.4.2.1 Change in colour of the synthesized silver nano colloid stored**
in atmospheric condition without stabilizing agent

2.4.2.2 Stability of the TSC capped silver nano colloids in atmospheric condition

2.4.2.3 Characterization of synthesized and TSC stabilized colloidal Silver nanoparticles

2.4.2.4 In-situ formation and stabilization of silver nanoparticles on polyester fabric

2.4.3 Synthesis of colloidal zinc nanoparticles

2.4.3.1 Stability of the synthesized zinc nano colloid stored in atmospheric condition without stabilizing agent

2.4.3.2 Characterization of synthesized and TSC stabilized colloidal Zinc nanoparticles

2.4.3.3 In-situ formation and stabilization of zinc nanoparticles on polyester fabric

2.5 References

3 APPLICATION OF NANO COLLOIDS TO TEXTILES

3.1 Introduction

3.2 Materials and experimental methods

3.2.1 Fabric

3.2.2 Dyes and chemicals

3.2.3 Equipments used for the work reported in this section

3.3 Experimental methods

3.3.1 Preparation of textile fabrics for nano treatment

3.3.2 Treatment of natural textiles with Copper, Silver and Zinc nano colloids

3.3.2.1 Exhaust method

3.3.2.2 Pad-dry-cure method

3.3.3 Testing and analysis

3.3.3.1 Fabric characterization

3.3.3.2 Determination of absorbency

3.3.3.3 Evaluation of water repellency

3.3.3.4 Evaluation of water permeability and permittivity
3.3.3.5 Evaluation of air permeability
3.3.3.6 Evaluation of antimicrobial activity
3.3.3.7 Evaluation of UV transmission property
3.3.3.8 Determination of electrical surface resistivity

3.3.4 Dyeing of nano treated and untreated fabrics
3.3.4.1 Dyeing of untreated and treated cotton & jute with direct dyes
3.3.4.2 Dyeing of untreated and treated wool & silk with direct dyes
3.3.4.3 Dyeing of untreated and treated wool & silk with acid dyes
3.3.4.4 Dyeing of wool and silk with natural colourants

3.3.5 Evaluation of dyed samples
3.3.5.1 Measurement of colour strength value (K/S value)
3.3.5.2 Evaluation of fastness properties

3.4 Results and discussion
3.4.1 Characterization of copper nano treated fabrics
3.4.2 Effect of copper nano treatment on physical properties
3.4.3 Effect of copper nano treatment on absorbency
3.4.4 Effect of copper nano on water permeability of fabric
3.4.5 Effect of copper nano on air permeability of fabric
3.4.6 Effect of copper nano on resistance against microbes
3.4.7 Effect of copper nano treatment on UV transmission property
3.4.8 Effect of copper nano treatment on electrical resistivity
3.4.9 Effect of copper nano treatment on dyeing behavior
3.4.10 Characterization of silver nano treated fabrics
3.4.11 Effect of silver nano treatment on physical properties
3.4.12 Effect of silver nano treatment on absorbency
3.4.13 Effect of silver nano on water permeability of fabric
3.4.14 Effect of silver nano on air permeability of fabric
3.4.15 Effect of silver nano on resistance against microbes
3.4.16 Effect of silver nano treatment on UV transmission property
3.4.17 Effect of silver nano treatment on electrical resistivity
3.4.18 Effect of silver nano treatment on dyeing behavior
3.4.19 Characterization of zinc nano treated fabrics
3.4.20 Effect of zinc nano treatment on physical properties 179
3.4.21 Effect of zinc nano treatment on absorbency 181
3.4.22 Effect of zinc nano on water permeability of fabric 182
3.4.23 Effect of zinc nano on air permeability of fabric 183
3.4.24 Effect of zinc nano on resistance against microbes 184
3.4.25 Effect of zinc nano treatment on UV transmission property 185
3.4.26 Effect of zinc nano treatment on electrical resistivity 186
3.4.27 Effect of zinc nano treatment on dyeing behavior 187

3.5 References 191

4 SYNTHESIS, CHARACTERIZATION AND APPLICATION OF CELLULOSE WHISKERS 192-

4.1 Introduction 192
4.2 Material 194
4.3 Experimental methods 195
4.3.1 Preparation of sodium zincate solution 195
4.3.2 Preparation of nano cellulose 195
4.3.3 Characterization of nano cellulose particles through 196
4.3.3.1 Particle size analyzer 196
4.3.3.2 Image analyzer 196
4.3.3.3 Scanning electron microscopy (SEM) 196
4.3.3.4 Fourier transform infrared spectroscopy (FTIR) 196
4.3.4 Application of nano cellulose to polyester fabric 196
4.3.4.1 Exhaust method 196
4.3.4.2 Pad-dry-cure method 197
4.3.5 Testing and analysis 197
4.3.5.1 Fabric characterization 197
4.3.5.2 Physical testing 197
4.3.5.3 Determination of absorbency 198
4.3.5.4 Evaluation of water permeability and permittivity 198
4.3.5.5 Evaluation of air permeability 198
4.3.6 Dyeing of nano cellulose treated and untreated fabric samples 198
4.3.6.1 Dyeing by exhaust technique 199
4.3.6.2 Dyeing by pad-dry-cure technique 199
4.3.7 Evaluation of dyed samples
4.3.7.1 Measurement of colour strength value
4.3.7.2 Fastness Tests

4.4 Results and discussion
4.4.1 Characterization of prepared nano cellulose
4.4.2 Effect of nano cellulose on physical properties of polyester fabrics
4.4.2.1 Effect on tensile strength
4.4.2.2 Effect on crease recovery
4.4.3 Effect of nano cellulose on water absorbency of polyester fabric
4.4.4 Effect of nano cellulose on water permeability of polyester fabric
4.4.5 Effect of nano cellulose on air permeability of polyester fabric
4.4.6 Effect of nano cellulose on dyeing of treated fabric with direct dye

4.5 References

5 ENVIRONMENTAL ASPECTS

5.1 Introduction
5.2 Experimental methods
5.2.1 Determination of B.O.D.
5.2.2 Determination of C.O.D.
5.2.3 Determination of T.D.S

5.3 Results and discussion

5.4 References

6 SUMMARY AND CONCLUSIONS
Scope for further study
Abbreviations