CHAPTER VI

BIBLIOGRAPHY
REFERENCES

1. Abhinav Goyal & Salim Yusuf; September 2006; Indian J Med Res 124, pp 235-244
 The burden of cardiovascular disease in the Indian subcontinent.

2. Ahlneck, C.; Zografi, G. The molecular basis of moisture effects on the physical and
chemical stability of drugs in the solid state. Int. J. Pharm. 1990, 62, 87–95

4. Ahuja N., Katare O, Singh B,(2007); Studies on dissolution enhancement and
 mathematical modelling of drug release of a poorly water-soluble drug using water-
soluble carriers, European Journal of Pharmaceutics and Biopharmaceutics (65) 26–38.

5. Ali rajabi-Siahboomi,(2000); An Over view of Current Oral Modified Release
 Technologies; Drug Delivery ORAL; 181-183

 a bio-pharmaceutics drug classification: the correlation of in vitro drug product
dissolution and in vivo bioavailability. Pharm. Res. 12, 413–420.

 a bio-pharmaceutics drug classification: the correlation of in vitro drug product
dissolution and in vivo bioavailability. Pharm. Res. 12, 413–420.

8. Amighi, K., Moes, A.J., (1995); Evaluation of thermal and film forming properties of
 acrylic aqueous polymer dispersion blends: application to the formulation of

 acrylic aqueous polymer dispersion blends: application to the formulation of
 sustained-release film coated theophylline pellets. Drug Dev. Ind. Pharm. 21, 2355–2569

 process of drug release (diffusion or erosion) for oral dosage forms. Computational
 and Theoretical Polymer Science, volume 10, 383-390.

11. Atul M. Mehta (1986); Factors in development of controlled release pellets,
 Pharmaceutical Technology Encyclopaedia

13. Avshalom B.M. Ilan z, Dipyridamole and acetylsalicylic acid formulations and process for preparing same; WO 2010036975 A3; Teva Pharmaceuticals Ltd; Sep 25, 2009

16. Baizhong Xue; et al. 2009 CN101428030 (A)

39. Eisert W, Gruber P; Pharmaceutical compositions containing dipyridamole or mepipidol and acetylsalicylic acid or the physiologically acceptable salts thereof, processes for preparing them and their use in treating clot formation; US Patent 6,015,577; Thomae GmbH; Dr. Karl; April 12, 1995
47. Frohoff-Huelsmann, M.A., Lippold, B.C., McGinity, J.W., (1999); Aqueous ethyl cellulose dispersion containing plasticizers of different water solubility and hydroxypropyl methyl cellulose as coating material for diffusion pellets I: drug release rates from coated pellets. Int. J. Pharm. 177, 69–82
55. Ghebre-Sellassie, I., (1994); Multiparticulate Oral Drug Delivery. Dekker, New York, USA
57. Gilbert James C; et al. [2008] US2008188497 (A1)
59. Goran Frenning, A sa Tuno, Goran Alderborn,(200 3); Modelling of drug release from coated granular pellets; Journal of Controlled Release (92) 113–123
60. Gruber; et al. 1980; US 4,367,217
62. Guangyan Wu; et al. 2008 CN201299813 (Y)
67. Harlan S Hall (2004); scaling of Fluid bed Coating, coating Place Inc.; Business briefing pharma tech
72. J. Siepmann, F. Lecomte, R. Bodmeier; (1999); Diffusion-controlled drug delivery systems: calculation of the required composition to achieve desired release profiles Journal of Controlled Release (60) 379–389
76. Jan Ploen, Jens Andersch, Michael Heschel and Claudia S. Leopold; Citric acid as a pH-modifying additive in an extended release pellet formulation containing a weakly basic drug; Drug Development and Industrial Pharmacy, 2009; 35(10): 1210–1218
79. Jong Soo Woo et al Complex formulation comprising aspirin coated with barrier containing hydrophobic additive, and hmg-coa reductase inhibitor; WO 2011096665 A2; Hanami holdings co ltd; Jan 26,2011
80. Jun Young Choi et al Pharmaceutical composite formulation comprising hmg-coa reductase inhibitor and aspirin; WO 2012081905 A2; Hanami holdings co ltd; Dec 14, 2011
82. K. Lehmann and D. Dreher, Coating small particles with acrylic resins, Pharm. Technol, 3:53 (1979)]
83. K. Lehmann, Chemistry and application properties of polymethacrylate coating systems, Chapter 4, in Aqueous Polymeric Coating for Pharmaceutical dosage Forms, (J. W. McGinity, ed.) Marcel Dekker, New York, 1989]
85. K. Srinath Reddy and Salim Yusuf; [1998]; 97;596-601 Emerging Epidemic of Cardiovascular Disease in Developing Countries
99. Leibovici; Minutza; et al. 2007 US 2007/0184110 A1
110. Ming Zhang; et al. 2008 CN201157559 (Y)
111. Minutza Leibovici; et al. 2008 HK1104791 (A1)
119. Pasahn Manohar; et al. 2010; EP2361615 (A1)
121. Phuong Ha-Lien Tran, Thao Truong-Dinh Tran, Kyoung-Ho Lee, Dong-Jin Kim & Beom-Jin Lee Dissolution-modulating mechanism of pH modifiers in solid dispersion containing weakly acidic or basic drugs with poor water solubility, Expert Opin. Drug Deliv. (2010) 7(5):647-661
122. Process Scale-up. CRC Press, New York, pp 267-324
129. Rongsheng Ma; et al. 2008 CN101259132
136. Stefanie Siepe, Barbara Lueckel, Andrea Kramer, Angelika Ries and Robert Gurny 2008, Vol. 34, No. 1 , Drug development and Industrial pharmacy; Pages 46-52
138. Swarbick James C Boylan James Absorption of Drugs ; Page 11 to 16, Encyclopedia of Pharmaceutical Technology; A-D Vol 2
142. Ulrich Heigoldt, Florian Sommer, Rolf Daniels, Karl-Gerhard Wagner, (2010) ; Predicting in vivo absorption behavior of oral modified release dosage forms containing pH-dependent poorly soluble drugs using a novel pH-adjusted biphasic in
vitro dissolution test; European Journal of Pharmaceutics and Biopharmaceutics 76 105–111

146. W. Rothe and G. Groppenbacher, Pharm. Ind 35:11 (1973)]

149. Weithmann, et al. 1985 US4,694,024

153. www.rxlist.com [Viewed 6th Dec 2013]

155. Yang Wang Huailin Liu; et al. 2010; CN102210693
156. Zhang Jun; et al. 2011; CN102178671 (A)