List of figures:
Figure 1.1 Type of luminescence
Figure 1.2 Mechanism of electroluminescence
Figure 1.3 Cathodoluminescence
Figure 1.4 The Jablonski diagram
Figure 1.5 Flash tube producing blue phosphorescence
Figure 1.6 Franck-Condon Shift in a diatomic molecule
Figure 1.7 Electroluminescence
Figure 1.8 OLED display in mobile phone and digital cameras
Figure 1.9 OLED device Structure
Figure 1.10 The CIE standard observer color matching functions
Figure 1.11 Chromaticity diagram
Figure 1.12 CIE triangle with CCT
Figure 1.13 Schematic diagram of white light emission by down conversion.
Figure 1.14 Multi emissive layer device structure (RGB)
Figure 1.15 Single emissive layer white device structure
Figure 2.1 Elemental Analyzer Perkin Elmer (CHN) instrument
Figure 2.2 Perkin Elmer Model No. 5700 FTIR spectrometer
Figure 2.3 Bruker Avance 300 1HNMR spectrometer
Figure 2.4 Mettler Toledo TGA/SDTA851e instrument
Figure 2.5 Mettler Toledo DSC822e instrument
Figure 2.6 Ray diagram of UV-Visible spectrophotometer
Figure 2.7 Horiba Jobin YVON spectrophotometer
Figure 2.8 Fluolog Model FL 3-11 spectrophotometer
Figure 2.9 NT-MDT Solver-Pro instrument
Figure 2.10 The C.I.E. chromaticity diagram.
Figure 2.11 Ocean Optics Model HR2000 Spectrofluorometer setup
Figure 2.12 Keithley Model 2400 Source Meter
Figure 2.13 Luminance meter Model LMT RS 232
Figure 2.14 Block diagram of the experimental setup for the transient EL measurements
Figure 3.1 general synthetic routes for the preparation of lithium metal quinolates.
Figure 3.2 Molecular structure of Liq molecule.
Figure 3.3 Molecular structure of LiClq molecule.
Figure 3.4 Molecular structure of LiCl$_2$q molecule.
Figure 3.5 Molecular structure of LiMeq molecule.
Figure 3.6 Molecular structure of LiMe$_2$q molecule.
Figure: 3.7 TGA-DSC trace of Liq.
Figure: 3.8 TGA-DSC trace of LiClq.
Figure: 3.9 TGA-DSC trace of LiCl$_2$q.
Figure: 3.10 TGA-DSC trace of LiMeq.
Figure: 3.11 TGA-DSC trace of LiMe$_2$q.
Figure 3.12 UV-visible absorption and PL of Liq.
Figure 3.13 UV-visible absorption and PL of LiClq.
Figure 3.14 UV-visible absorption and PL of LiCl$_2$q.
Figure 3.15 UV-visible absorption and PL of LiMeq.
Figure 3.16 UV-visible absorption and PL of LiMe$_2$q.
Figure 3.17 Effect of solvent on PL spectrum of metal complex.
Figure: 3.18 PL of Liq in different solvents.
Figure: 3.19 PL of LiClq in different solvents.
Figure: 3.20 PL of LiCl$_2$q in different solvents.
Figure: 3.21 PL of LiMeq in different solvents.
Figure: 3.22 PL of LiMe$_2$q in different solvents.
Figure: 3.23 Two and three dimensional AFM images of Liq film.
Figure: 3.24 Two and three dimensional AFM images of LiClq film.
Figure: 3.25 Two and three dimensional AFM images of LiCl$_2$q film.
Figure: 3.26 Two and three dimensional AFM images of LiMeq film.
Figure: 3.27 Two and three dimensional AFM images of LiMe$_2$q film.
Figure 3.28 EL of Liq at different voltages.
Figure 3.29 EL of LiClq at different voltages.
Figure 3.30 EL of LiCl$_2$q at different voltages.
Figure 3.31 EL of LiMeq at different voltages.
Figure 3.32 EL of LiMe$_2$q at different voltages.
Figure 3.33 Current-Voltage of Liq.
Figure 3.34 (a) I-V-L of LiClq; (b) V-CE and V-PE of LiClq.
Figure 3.35 (a) I-V-L of LiCl$_2$q; (b) V-CE and V-PE of LiCl$_2$q.
Figure 3.36 (a) I-V-L of LiMeq; (b) V-CE and V-PE of LiMeq.
Figure 3.37 (a) I-V-L of LiMe$_2$q; (b) V-CE and V-PE of LiMe$_2$q.
Figure 3.38 (a) V-I characteristics of the devices having Liq as injecting material.
(b) V-L characteristics of the devices having Liq as injecting material.

Figure 3.39 (a) V-I characteristics of the devices having LiClq as injecting material.
(b) V-L characteristics of the devices having LiClq as injecting material.

Figure 3.40 (a) V-I characteristics of the devices having LiCl2q as injecting material.
(b) V-L characteristics of the devices having LiCl2q as injecting material.

Figure 3.41 (a) V-I characteristics of the devices having LiMeq as injecting material.
(b) V-L characteristics of the devices having LiMeq as injecting material.

Figure 3.42 (a) V-I characteristics of the devices having LiMe2q as injecting material.
(b) V-L characteristics of the devices having LiMe2q as injecting material.

Figure 3.43 V-L characteristic of the devices having Liq doped Alq3 as ETL. Inset: V-I characteristic of the devices having Liq doped Alq3 as ETL.

Figure 3.44 (a) V-CE of the devices having Liq doped Alq3 as ETL.
(b) V-PE of the devices having Liq doped Alq3 as ETL.

Figure 3.45 V-L characteristic of the devices having LiClq doped Alq3 as ETL. Inset: V-I characteristic of the devices having LiClq doped Alq3 as ETL.

Figure 3.46 (a) V-CE of the devices having LiClq doped Alq3 as ETL.
(b) V-PE of the devices having LiClq doped Alq3 as ETL.

Figure 3.47 V-L characteristic of the devices having LiCl2q doped Alq3 as ETL. Inset: V-I characteristic of the devices having LiCl2q doped Alq3 as ETL.

Figure 3.48 (a) V-CE of the devices having LiCl2q doped Alq3 as ETL.
(b) V-PE of the devices having LiCl2q doped Alq3 as ETL.

Figure 3.49 V-L characteristic of the devices having LiMeq doped Alq3 as ETL. Inset: V-I characteristic of the devices having LiMeq doped Alq3 as ETL.

Figure 3.50 (a) V-CE of the devices having LiMeq doped Alq3 as ETL.
(b) V-PE of the devices having LiMeq doped Alq3 as ETL.

Figure 3.51 V-L characteristic of the devices having LiMe2q doped Alq3 as ETL. Inset: V-I characteristic of the devices having LiMe2q doped Alq3 as ETL.

Figure 3.52 (a) V-CE of the devices having LiMe2q doped Alq3 as ETL.
(b) V-PE of the devices having LiMe2q doped Alq3 as ETL.

Figure 4.1 TGA-DSC trace of ZnHPB(Clq)
Figure 4.2 TGA-DSC trace of ZnHPB(Clq)
Figure 4.3 TGA-DSC trace of ZnHPB(Meq)
Figure 4.4 TGA-DSC trace of ZnHPB(CNq)
Figure 4.5 UV-visible absorption and PL spectra of ZnHPB(Clq)
Figure 4.6 UV-visible absorption and PL spectra of ZnHPB(Cl$_2$q)
Figure 4.7 UV-visible absorption and PL of ZnHPB(Me$_2$q)
Figure 4.8 UV-visible absorption and PL of ZnHPB(CNq)
Figure 4.9 Two and three dimensional AFM image of ZnHPB(Cl$_2$q) film
Figure 4.10 Two and three dimensional AFM image of ZnHPB(Cl$_2$q) film
Figure 4.11 Two and three dimensional AFM image of ZnHPB(Me$_2$q) film
Figure 4.12 Two and three dimensional AFM image of ZnHPB(CNq) film
Figure 4.13 (a) EL of ZnHPB(Cl$_2$q) at different voltage
(b) Photograph of the working device
Figure 4.14 (a) EL of ZnHPB(Cl$_2$q) at different voltage
(b) Photograph of the working device
Figure 4.15 (a) EL of ZnHPB(Me$_2$q) at different voltage
(b) Photograph of the working device
Figure 4.16 (a) EL of ZnHPB(CNq) at different voltage
(b) Photograph of the working device
Figure 4.17 (a) I-V-L of ZnHPB(Cl$_2$q); (b) V-CE and V-PE of ZnHPB(Cl$_2$q)
Figure 4.18 (a) I-V-L of ZnHPB(Cl$_2$q); (b) V-CE and V-PE of ZnHPB(Cl$_2$q)
Figure 4.19 (a) I-V-L of ZnHPB(Me$_2$q); (b) V-CE and V-PE of ZnHPB(Me$_2$q)
Figure 4.20 (a) I-V-L of ZnHPB(CNq); (b) V-CE and V-PE of ZnHPB(CNq)
Figure 4.21 μ Vs E$^{1/2}$ of ZnHPB(Cl$_2$q); inset: input and output pulse
Figure 4.22 μ Vs E$^{1/2}$ of ZnHPB(Cl$_2$q); inset: input and output pulse
Figure 4.23 μ Vs E$^{1/2}$ of ZnHPB(Me$_2$q); inset: input and output pulse
Figure 4.24 μ Vs E$^{1/2}$ of ZnHPB(CNq); inset: input and output pulse
Figure 4.25 (a) Voltage-Luminescence of comparative devices
(b) Photograph of the working device
Figure 4.26(a) Voltage-Current Efficiency of comparative devices
(b) Voltage-Power Efficiency of comparative devices
Figure 5.1 TGA-DSC trace of (BuOXD)$_2$Ir(tta)
Figure 5.2 TGA-DSC trace of (BuOXD)$_2$Ir(tmd)
Figure 5.3 TGA-DSC trace of (OctOXD)$_2$Ir(tta)
Figure 5.4 TGA-DSC trace of (OctOXD)$_2$Ir(tmd)
Figure 5.5 UV-visible absorption and PL spectra of (BuOXD)$_2$Ir(tta)
Figure 5.6 UV-visible absorption and PL spectra of (BuOXD)$_2$Ir(tmd)
Figure 5.7 UV-visible absorption and PL of (OctOXD)$_2$Ir(tta)
Figure 5.8 UV-visible absorption and PL of (OctOXD)$_2$Ir(tmd)
Figure 5.9 (a) EL of (BuOXD)$_2$Ir(tta) at different voltage
(b) Photograph of the working device

Figure 5.10 (a) EL of (BuOXD)$_2$Ir(tmd) at different voltage
(b) Photograph of the working device

Figure 5.11 (a) EL of (OctOXD)$_2$Ir(tta) at different voltage
(b) Photograph of the working device

Figure 5.12 (a) EL of (OctOXD)$_2$Ir(tmd) at different voltage
(b) Photograph of the working device

Figure 5.13 (a) I-V-L of (BuOXD)$_2$Ir(tta); (b) V-CE and V-PE of (BuOXD)$_2$Ir(tta)

Figure 5.14 (a) I-V-L of (BuOXD)$_2$Ir(tmd); (b) V-CE and V-PE of (BuOXD)$_2$Ir(tmd)

Figure 5.15 (a) I-V-L of (OctOXD)$_2$Ir(tta); (b) V-CE and V-PE of (OctOXD)$_2$Ir(tta)

Figure 5.16 (a) I-V-L of (OctOXD)$_2$Ir(tmd); (b) V-CE and V-PE of (OctOXD)$_2$Ir(tmd)

Figure 6.1 Multi emissive layer device structure (complementary emissive color)

Figure 6.2 PL spectrum of Zn(HPB)$_2$ and ZnHPB(Me$_2$q)

Figure 6.3 Schematic energy level diagram of the device structure

Figure 6.4 EL spectra of Devices 1 to 6

Figure 6.5 The CIE coordinates of devices (1 to 6) on CIE color triangle

Figure 6.6 EL spectra of device 4 at various voltages

Figure 6.7 The pictures of emitted light of device 4 at different voltages

Figure 6.8 I-V-L characteristics of device (4); V-C.E. and V-P.E. (Inset)

Figure 6.9 (A and B) The molecular structure of emissive material LiMeq & DCM dye molecules, respectively. (C and D) WOLED device configuration and the photograph of the device 4.

Figure 6.10 The absorption spectra of DCM dye and PL spectra of LiMeq.

Figure 6.11(a) The EL spectra of all the six devices [1, 2, 3, 4, 5 and 6]
(b) PL spectrum of pure LiMeq and PL spectrum of LiMeq mixed with α-NPD

Figure 6.12 The CIE coordinates of devices (1 to 6) on CIE color triangle

Figure 6.13 Schematic energy level diagram of device structure used in this study

Figure 6.14 EL spectra of device (4) at various voltages

Figure 6.15 I-V-L characteristics of device (4)

Figure 6.16 V-CE and V-PE of device 4, inset: CE and PE of doped device.