

List of Figures

Fig. 1.1: Photograph depicting the industrial discharges, containing dyes, xenobiotic compounds and many other unnatural products, released in the Khari-cut canal flowing through the GIDC, Vatva, Ahmedabad, Gujarat, India. Canal bank samples used in the present study have been collected from this site--------------------- 2

Fig. 1.2: The flow chart depicting basic metagenomic approach------------------------------- 8

Fig. 1.3: Representation of hypervariable regions within the 16S rRNA gene. The plotted blue line reflects fluctuations in variability amongst aligned 16S rRNA gene sequences; peaks reflect greater conservation, while troughs correspond to the known hypervariable regions V1 to V9, also indicated by the red bars---------- 10

Fig. 1.4: (a) Integrating molecular and ‘omic’ approaches to gain insight into microbial bioremediation; (b) A schematic representation describing how integrated molecular analysis facilitates in understanding bioremediation strategies-- 26-27

Fig. 2.1: Metagenomic DNA electrophoresed on 0.8% (w/v) agarose gel. Lane 1: Supermix DNA ladder; Lanes 2 to 4: Metagenomic DNA--- 61

Fig. 2.2: Metagenomic DNA partially digested with BfuCI enzyme. Lane 1: Tube 1; Lane 2: Tube 2; Lane 3: Tube 3; Lane 4: Tube 4; Lane 5: Tube 5; Lane 6: Supermix DNA ladder. (The details of the process - specifying what tube numbers stand for are given in section 2.2.4.1.1)---------------------------------- 62

Fig. 2.3: Metagenomic DNA partially digested with BfuCI enzyme. Lane 1: 6-10 kb eluted inserts; Lane 2: Supermix DNA ladder--- 62

Fig. 2.4: Agarose gel (1%) showing vector pBKS preparation. Lane 1: Supermix DNA ladder; Lane 2: Isolated pBKS vector; Lane 3: pBKS vector digested with BamHI-- 63

Fig. 2.5: Agarose gel (1%) showing vector pUC19 preparation. Lane 1: Supermix DNA ladder; Lane 2: Isolated pUC19 vector; Lane 3: pUC19 vector digested with BamHI and PstI-- 64

Fig. 2.6: Agarose gel (1%) showing recombinant vectors. Lanes 1 to 5: Recombinant pUC19 vectors; Lane 6: 10 kb DNA ladder--- 65

Fig. 2.7: Agarose gel (1%) showing digestion pattern of recombinant vectors. Lanes 1 to 3: Digested recombinant vectors; Lane 4: 10 kb DNA ladder------------------ 66

Fig. 3.1: (a) and (b) Screenshots showing MetaSAMS software platform------------------ 78

Fig. 3.2: Metagenomic DNA electrophoresed on 0.8% (w/v) agarose gel. Lane 1: Supermix DNA ladder; Lanes 2 to 4: Metagenomic DNA---------------------------------- 80

Fig. 3.3: Graph showing GC content (a) and length (b) of reads------------------------ 81
Fig. 3.4: A schematic photograph showing taxonomic profiling by MetaSAMS by three different complementary approaches at rank genus.

Fig. 3.5: View of taxa among bacteria at all ranks classified according to 16S rDNA (RDP Classifier). The taxa abundant and playing a role in xenobiotic biodegradation are displayed. Below the names at each rank, numbers are represented wherein, the first number specifies the total number of reads classified to that taxon and the second number (in parentheses) specifies the reads that can be accurately classified only till this rank and cannot be classified at lower rank.

Fig. 3.6: The rarefaction curves at rank phylum (a) and rank genus (b) for all the three microbial classification approaches (RDP, CARMA and LCA).

Fig. 3.7: The graph shows the most abundant phyla (a) and genera (b) according to all the three different classification approaches.

Fig. 3.8: A schematic photograph showing mapping of reads on genome of *Pseudomonas stutzeri* A1501.

Fig. 3.9: Number of metagenome reads mapped on genomes of microorganisms are depicted.

Fig. 4.1: Screenshot showing the detected Pfam families using MetaSAMS software platform.

Fig. 4.2: Screenshot showing the detected GO terms using MetaSAMS software platform.

Fig. 4.3: (a) and (b) Screenshots showing the characterization of genes in assembled reads using MetaSAMS software platform.

Fig. 4.4: Categorisation of assembled reads according to Clusters of Orthologous Groups of proteins (COGs). Categories are abbreviated as follows: B, chromatin structure and dynamics; L, replication, recombination and repair; K, transcription; J, translation, ribosomal structure and biogenesis; D, cell cycle control, cell division, chromosome partitioning; M, cell wall/membrane/envelope biogenesis; N, cell motility; O, posttranslational modification, protein turnover, chaperones; T, signal transduction mechanisms; U, intracellular trafficking, secretion, and vesicular transport; V, defense mechanisms; C, energy production and conversion; E, amino acid transport and metabolism; F, nucleotide transport and metabolism; G, carbohydrate transport and metabolism; H, coenzyme transport and metabolism; I, lipid transport and metabolism; P, inorganic ion transport and metabolism; Q, secondary metabolites biosynthesis, transport and catabolism; Z, cytoskeleton; R, general function prediction only; and S, function unknown.

Fig. 4.5: A schematic figure showing mapped enzymes on benzoate degradation via Co-A ligation pathway.

Fig. 5.1: Chemical structure of Reactive Violet 5 (RV5) dye.

Fig. 5.2: Dye decolourization profile depicted by (a) photograph and (b) UV-Visible overlay spectra. (Inoculated and Dye degraded)
Fig. 5.3: (a) Effect of various carbon sources on decolourization of RV5 by V9 consortium under anoxic condition at 37ºC; (b) Effect of different glucose concentrations on decolourization of RV5 by V9 consortium under anoxic condition at 37ºC.

Fig. 5.4: (a) Effect of various nitrogen sources on decolourization of RV5 by V9 consortium under anoxic condition at 37ºC; (b) Effect of different yeast extract concentrations on decolourization of RV5 by V9 consortium under anoxic condition at 37ºC; (c) Effect of different yeast extract concentrations on decolourization of RV5 by V9 consortium under aerobic condition at 37ºC.

Fig. 5.5: Effect of different temperatures on decolourization of RV5 by V9 consortium under anoxic condition.

Fig. 5.6: Dye decolourization and growth profile of V9 consortium under (a) anoxic and (b) aerobic conditions at 37ºC.

Fig. 5.7: Effect of salinity on decolourization of RV5.

Fig. 5.8: Spectrum of dyes decolourized by the V9 consortium.

Fig. 5.9: 16S rRNA genes amplified by colony PCR. Lanes 1 to 7: 16S rRNA genes from seven different pure cultures; Lane 8: Supermix DNA ladder.

Fig. 5.10: Consortial genomic DNA electrophoresed on 0.8% (w/v) agarose gel. Lane 1: Supermix DNA ladder; Lanes 2 and 3: Consortial genomic DNA.

Fig. 5.11: Azoreductase gene amplified from consortial genomic DNA. Lanes 1 and 2: Azoreductase gene; Lane 3: Supermix DNA ladder.

Fig. 5.12: Nucleotide sequence of the amplified azoreductase gene (JN400335).

Fig. 5.13: Phylogenetic relationship of the cloned gene sequence (a) and its deduced amino acid sequence (b) with gene and protein sequences of azoreductases available in database, respectively. The trees were constructed using neighbour joining algorithm with Kimura 2 parameter distances in MEGA 4.0 software. Numbers at nodes indicate percent bootstrap values above 50 supported by 550 replicates. The bar indicates the Jukes-Cantor evolutionary distance. The names of the downloaded sequences are as described in GenBank. The cloned gene is named as cloned azoreductase gene in (a) and as ORF of cloned azoreductase gene in (b).

Fig. 5.14: Agarose gel (1%) analysis of vectors. Lane 1: Supermix DNA ladder; Lane 2: Isolated pUC19 vector; Lane 3: pUC19 vector digested with BamHI and HindIII enzymes; Lane 4: Isolated pET28a+ vector; Lane 5: pET28a+ vector digested with BamHI and HindIII enzymes.

Fig. 5.15: Amplification of azoreductase gene using M13 primers. Lane 1: Azoreductase gene; Lane 2: 100 bp ladder.

Fig. 5.16: Dye degradation by pET1 E. coli BL21(DE3) clone with different co-factors: (a) FAD, (b) FMN, (c) NAD, (d) NADP.Na2, (e) NADH.DPNH and (f) NADPH.Na4. (□ 0 min, ▲ 10 min, ◦ 20 min and ■ 30 min)
Fig. 5.17: Dye degradation by pET1 E. coli BL21(DE3) clone at different concentrations of NADPH. Na4 (a) 0 mM, (b) 0.5 mM, (c) 1 mM and (d) 1.5 mM. (0 min, 10 min and 20 min)-- 164

Fig. 5.18: Comparison of dye degradation by cloned gene product with experimental controls: (a) E. coli B21(DE3), (b) E. coli DH5α, (c) E. coli DH10B, (d) Strain with vector pUC19, (e) Strain with vector pET28a+, (f) pUC1 E. coli DH10B clone, (g) pET1 E. coli DH10B clone and (h) pET1 E. coli BL21(DE3) clone. [0 min and 3 h for (a-g) / 7 min for (h)]-- 166-167