LIST OF TABLES

CHAPTER 2
Table 2.1 A few plant families in which candidate DNA barcode regions have been studied.

CHAPTER 3
Table 3.1 Sample ID, locality of collection and specimen voucher no. of the ten Ocimum species collected from southern India.
Table 3.2 Details regarding the commercial products of Ocimum spp. assessed in the study.
Table 3.3 Primer and PCR annealing temperature details of the four DNA barcode regions used in the present study.

CHAPTER 4
Table 4.1 Pairwise distance matrix of the matK region based on the sequences of the ten Ocimum spp. using the Maximum Composite Likelihood method.
Table 4.2 Pairwise distance matrix of the rbcL region based on the sequences of the ten Ocimum spp. using the Maximum Composite Likelihood method.
Table 4.3 Pairwise distance matrix of the psbA-trnH region based on the sequences of the ten Ocimum spp. using the Maximum Composite Likelihood method.
Table 4.4 Sequence based evaluation of the matK, rbcL and psbA-trnH
regions of the ten *Ocimum* spp., using the single and tiered methods.

Table 4.5 A comparative representation of the most suitable sequence analysis method for each of the ten *Ocimum* spp.

CHAPTER 5

Table 5.1 Mean Cq and Tm obtained on HRM analysis of the ten *Ocimum* spp.

Table 5.2 HRM analysis data and results for the commercial products of *Ocimum* spp.

CHAPTER 6

Table 6.1 Composition of reaction mixture for the RFLP analysis of *Ocimum* spp. using DraI (10 U/µl) and EcoRI (20 U/µl) restriction enzymes.

Table 6.2 *In silico* RFLP analysis data of the restriction enzymes that digest the *matK* region of the ten *Ocimum* spp. and bp sizes of the resultant amplicon fragments.

Table 6.3 *In silico* RFLP analysis data of the restriction enzymes that digest the *rbcL* region of the ten *Ocimum* spp. and bp sizes of the resultant amplicon fragments.

Table 6.4 *In silico* RFLP analysis data of the restriction enzymes that digest the *psbA-trnH* region of the ten *Ocimum* spp. and bp sizes of the resultant amplicon fragments.