LIST OF FIGURES

1.1. Fibre reinforced plastic composites used in 2002 (2.28×10^9 lb) ...3
1.2. The growth of the composite industry in India ...4
1.3. Schematic representation of classification of composites ...5
1.4. Schematic representation of a laminar composite ...8
1.5. Schematic representation of properties of different hybrid Combination11
1.6. Typical plain weave fabric ..13
1.7. Various perform architectures ..13
1.8. Effect of stretching force on the strain around short fibre in a low modulus matrix ...16
1.9. Schematic model of interphase ...17
1.10. Schematic representation of RTM technique ...23
1.11. Structure of cellulose ...34
1.12. Structure of Hemicellulose ...35
1.13. Structure of lignin ...36
1.14. Microstructure of plant fibre ..38
1.15. The effect of chemical treatments on the tensile strength of sisal/PP composites after immersion in water. Fibre loading 20%, temperature 20° C55
1.16. Optical fractographs of ODFC of (a) as-received and (b) wax-free coconut fibres showing large fibre pullout for the later due to poor interfacial bonding56
1.17(a & b) SEM photomicrographs of the fracture tensile surfaces of ramie/SPI and ramie/MSPI composites ..62
1.18. Electron micrograph of the disintegrated micro fibrils ...64
1.19. Flexural stiffness and strength of hybrid biofibre-based cellular plates68
1.20. The interior parts of the Mercedes A-200 made by Natural Mat Thermoplastic ...73
2.1. Different layering patterns of fibre (a) banana/sisal/banana (b) sisal/banana/sisal (c) sisal/banana (d) intimate mix ...97
2.2. Arrangement of three layers of banana fabric in parallel way (L, longitudinal, in which samples are cut along the weave direction, (T, transverse, samples are cut perpendicular to the weave direction)99
3.1. Tensile stress-strain curve of banana/sisal/polyester composites having different fibre loading (ratio of banana and sisal = 1:1) ...109

3.2. Effect of fibre loading on tensile strength of unhybridized composites and hybrid composites having different volume ratio of fibres ..109

3.3. Scanning electron micrographs of the tensile fracture surface of hybrid composites (a) at 0.20 and (b) 0.40 Vf having volume ratio of fibres 1:1 (magnification x 65) ...110

3.4. Tensile stress-strain behaviour of unhybridized and hybrid composites (total Vf = 0.40) ..113

3.5. Effect of varying the relative volume fraction of banana and sisal on the tensile strength of banana/sisal hybrid fibre reinforced polyester composites at different fibre loading ..114

3.6. Scanning electron micrograph of tensile fracture surface of unhybridized composites and hybrid composite having volume ratio of banana and sisal 1:3 at a total fibre loading of 0.40 Vf (a) banana/polyester x 50, (b & c) banana/sisal hybrid composites at x 50 and x 100, (d & e) sisal/polyester composites at x 50 and x 100 ..116

3.7. Tensile stress-strain behaviour of banana/sisal hybrid composites having different layering patterns of fibres (volume ratio of fibres = 1:1, Vf = 0.40) ..118

3.8. Flexural stress-strain behaviour of intimately mixed hybrid composites at different fibre loading, keeping the volume ratio of banana and sisal 1:1 ..120

3.9. Effect of fibre loading on flexural strength of banana/sisal hybrid composites at different volume ratios of fibres, banana/polyester composites and sisal/polyester composites ...120

3.10. Flexural stress-strain behaviour of intimately mixed banana/sisal/polyester composites on varying the relative volume fraction of the two fibres and that of unhybridized composites at a total volume fraction of 0.40.122

3.11. Effect of varying the relative volume fraction of banana and sisal on flexural strength of intimately mixed banana/sisal/polyester composites at different fibre loading ..122

3.12. Flexural stress-strain curve of the hybrid composites having different layering pattern (volume ratio of fibres = 1:1, Vf = 0.40) ...122

3.13. Effect of fibre loading on impact strength of unhybridized and hybrid composites ...124

3.14. Effect of varying the relative volume fraction of banana and sisal on impact strength of banana/sisal/polyester composites at different fibre loading126
3.15. Scanning electron micrographs of the impact fractured surfaces of the hybrid and unhybridised composites (a) banana/polyester composite x 50, (b) sisal/polyester composites x 50, (c) hybrid composite having Vf of banana 0.19 (x 100). ...128

3.16. Effect of fibre loading on abrasion loss of the hybrid composites having volume ratio of banana and sisal 1:1 ..130

3.17. Experimental tensile strength and theoretical predictions in intimately mixed hybrid composites having different fibre volume ratio (Vf = 0.40).................................131

3.18. Experimental results and theoretical predictions of tensile modulus in intimately mixed hybrid composites when the relative volume fraction of the two fibres is varied at a total fibre loading of 0.40 Vf. ..132

4.1. Effect of fibre loading on storage modulus with temperature of the hybrid composites having volume ratio of banana and sisal 1:1..141

4.2. Effect of fibre loading with temperature on the tan δ values of the hybrid Composites having volume ratio of banana and sisal 1:1...144

4.3. Effect of fibre loading with temperature on the loss modulus values of the hybrid composites (banana: sisal =1:1)..147

4.4. Variation of storage modulus as a function of temperature for unhybridized and hybrid composite at a total fibre loading 0.40 Vf at 20Hz. (S-100 %sisal, B- 100 % banana) ..148

4.5. Effect of varying the relative volume fraction of banana and sisal on storage modulus values of the hybrid composites at a total fibre loading 0.40 Vf at 20 Hz ...149

4.6. Effect of varying the relative volume fraction of banana and sisal on the tan δ values of the hybrid composites at a total fibre loading 0.40 Vf at 20 Hz.152

4.7. Effect of varying the relative volume fraction of banana and sisal on the loss modulus values of the hybrid composites at a total fibre loading 0.40 Vf at 20 Hz ..153

4.8. Effect of layering pattern on storage modulus with temperature of the hybrid composites at a frequency of 20 Hz. (Vf = 0.40, banana: sisal = 1:1).........................154

4.9. Effect of layering pattern on tan delta values with temperature of the hybrid composites at a frequency of 20 Hz (Vf = 0.40, banana: sisal = 1:1)...............................156

4.10. Effect of layering pattern on loss modulus values with temperature of the hybrid composites at a frequency of 20 Hz (Vf = 0.40, banana: sisal = 1:1)...........157

4.11. Variation of storage modulus with temperature at different frequencies of the hybrid composite having volume ratio of fibres 1:1 at 0.20 Vf...158

4.12. Effect of frequency on tan δ with temperature of the hybrid composites at 0.40 Vf having volume ratio of fibres 1:1 ..159
4.13. Master curve. Time temperature superposition curve ...160
4.14. Cole-cole plot of the hybrid composites having volume ratio of banana and sisal (1:1) at different fibre loading. ...162
4.15. Experimental and theoretical storage modulus of the composites having different fibre loading at 90 and 130°C ..163
4.16. Experimental and theoretical storage modulus of the composites having different volume ratio of banana and sisal at different temperatures.................164
4.17. Theoretical modelling of tan δ with temperature of the hybrid composites at different fibre loading having volume ratio of banana and sisal 1:1...............165

5.1.1. UV/Vis absorption spectra on dye 3 on untreated and various treated banana fibres. (Bu – untreated, B1 – Sil.1 treated, B2 Sil.2, B3 – A1100, B4 – 1% NaOH, B5 – PSMA) ..178
5.1.2. Scheme of interaction of cellulose with silane ..179
5.1.3. Schematic representation of aminosilane with cellulose fibre180
5.1.4. Schematic representation PSMA with cellulose fibre ..180
5.1.5. UV/Vis absorption spectra of dye 1, 2 and 3 on aminosilane treated banana fibre ...183

5.2.1. Scanning electron micrographs of the surface of the untreated (a) banana fibre (x 100) (b) sisal fibre (x 100) ...191
5.2.2. Scanning electron micrographs of the surface of (magnification x 500) (a) untreated (b) silane 1 (c) silane 2 (d) A1100 (e) PSMA and (f) 10 % NaOH treated banana fibre. ...192
5.2.3. Scanning electron micrograph of (a) silane 1 (b) silane 2 and (c) A1100 treated sisal fibre (x 500) ...193
5.2.4. Tensile stress-strain curve of unmodified and chemically modified fibre composites (Vf = 0.40, banana: sisal =1:1) ...196
5.2.5. Flexural stress-strain curve of unmodified and chemically modified fibre composites (Vf = 0.40, banana: sisal =1:1) ...198
5.2.6. SEM of the tensile fracture surface of (a) the untreated and (b) A1100 treated fibre composite (x 200) ...199
5.2.7. FTIR spectrum of untreated banana fibre ...199
5.2.8. FTIR spectrum of A1100 treated banana fibre ..200
5.2.9. SEM of the tensile fracture surface of silane 1 treated fibre composite (x 200)201
5.2.10. SEM of the tensile fracture surface of silane 2 treated fibre composite (magnification x188) ..202
5.2.11. SEM of the tensile fracture surface of 10 % NaOH treated fibre composite (x188) ..204
5.2.12. SEM of the tensile fracture surface of PSMA treated fibre Composite (x 190)........205
5.3.1. Effect of fibre surface modification on storage modulus of the hybrid composites as a function temperature at a frequency of 20 Hz (Vf = 0.40, banana: sisal = 1:1) .. 215
5.3.2. Effect of fibre surface modification on tan δ with temperature at a frequency of 20 Hz (Vf = 0.40, banana: sisal = 1:1)... 217
5.3.3. Effect of frequency with temperature on tan δ of PSMA treated fibre composite220
5.3.4. Cole-cole plots of the chemically modified fibre composites 221
6.1. Molar water uptake of banana/sisal hybrid fibre reinforced polyester composites having different fibre loading as a function of immersion time at a temperature of 300 C (banana: sisal = 1:1)..230
6.2 Scanning electron micrograph of cross section of a cellulosic fibre 230
6.3. Representation of interaction of cellulose with water molecule 231
6.4. Molar water uptake of banana/sisal hybrid fibre reinforced polyester composites having different fibre loading as a function of immersion time at a temperature of 500C (banana: sisal = 1:1)... 231
6.5. Molar water uptake of banana/sisal hybrid fibre reinforced polyester composites having different fibre loading as a function of immersion time at a temperature of 900C (banana: sisal = 1:1)... 232
6.6. Molar water uptake of chemically modified banana/sisal hybrid fibre reinforced polyester composites having 0.40 Vf at a temperature of 300 C (banana:sisal = 1:1)... 234
6.7. Molar water uptake of chemically modified banana/sisal hybrid fibre reinforced polyester composites as a function of immersion time at a temperature of 500 C, Vf = 0.40 (banana: sisal = 1:1).. 234
6.8. Molar water uptake of chemically modified banana/sisal hybrid fibre reinforced polyester composites (0.40 Vf) as a function of immersion time at a temperature of 900 C (banana: sisal = 1:1)... 236
6.9. Mole% water uptake of banana/sisal hybrid fibre reinforced polyester composites having different volume ratio of banana and sisal at 0.40 Vf as a function of immersion time at 900 C..237
6.10. Experimental and fitted diffusion curve for banana/sisal hybrid fibre composite having volume fraction 0.50 V_f at 90°C. .. 246

7.1.1. Variation of dielectric constant with frequency as a function of fibre loading. (banana : sisal = 1:1) .. 258

7.1.2. Variation of dielectric constant with frequency as a function of varying the volume fraction of the two fibres. ($V_f = 0.40$) ... 260

7.1.3. Variation of dielectric constant with frequency as a function of chemical Modification ($V_f = 0.40$, banana: sisal = 1:1) .. 262

7.1.4. Effect of fibre loading on volume resistivity as a function of frequency. (banana: sisal = 1:1) .. 264

7.1.5. Effect of varying the relative volume fraction of fibres on volume resistivity as a function of frequency ($V_f = 0.40$) ... 265

7.1.6. Effect of chemical modification on volume resistivity as a function of Frequency (banana: sisal 1:1, $V_f = 0.40$) .. 266

7.2.1. Thermophysical measurements set up... 274

7.2.2. Theoretical and experimental heat transfer functions (modulus and phase) for the composite sample prepared with 0.60 V_f of polyester and 0.40 V_f of banana/sisal fibre ... 275

7.2.3. Sensitivity to identified parameter of heat transfer function modulus and phase for the composite sample prepared with 0.6 V_f of polyester and 0.4 V_f of banana/sisal fibre ... 276

7.2.4 Scanning electron micrographs of the fracture surfaces of (a) untreated and (b) NaOH treated fibre composites ... 279

7.2.5. Scanning electron micrograph of fracture surface of PSMA treated fibre composite ... 280

7.2.6. Thermal conductivity first order models of fibre composites .. 281

7.2.7. Evaluation of relative thermal conductivity versus relative density for all composite studied ... 282

8.1. Effect of fibre loading on tensile strength of banana/sisal hybrid fibre reinforced polyester composites fabricated by compression and resin transfer moulding (banana: sisal = 1:1) ... 289

8.2. Scanning electron micrograph of the tensile fracture surfaces of (a) CM composite ($V_f = 0.40$) (x 200) (b) RTM composite ($V_f = 0.42$), banana: sisal = 1:1 (x 182) ... 290

8.3. Effect of fibre loading on flexural strength of banana/sisal hybrid fibre reinforced polyester composites fabricated by compression and resin transfer moulding (banana: sisal = 1:1). ... 291
8.4. Effect of fibre loading on impact strength of banana/sisal hybrid fibre reinforced polyester composites fabricated by compression and resin transfer moulding (banana:sisal = 1:1) .. 292

8.5. Effect of fibre loading with temperature on the storage modulus of the hybrid composites fabricated by compression and resin transfer moulding (banana:sisal = 1:1) ... 294

8.6. Effect of fibre loading with temperature on tan δ of the hybrid composites fabricated by resin transfer moulding (banana : sisal = 1:1) .. 296

8.7. Effect of fibre loading with temperature on the loss modulus of the hybrid composites fabricated by resin transfer moulding (banana : sisal = 1:1) 298

8.8. Abrasion loss of CM and RTM composites at different fibre loading (banana: sisal =1:1) .. 299

8.9. Mole % water uptake of compression and resin transfer moulded banana/sisal hybrid fibre reinforced polyester composites having different fibre loading as a function of immersion time at a temperature of 30°C. (banana ; sisal = 1:1) ... 301

9.1.1. The weave architecture .. 317

9.1.2. Arrangement of three layers of fabric in parallel way (L, longitudinal, in which samples are cut along the weave direction. (T, transverse, samples are cut perpendicular to the weave direction) ... 318

9.1.3. Stress-strain curve of banana fabric/polyester composites [B(1)-banana; monolayer, $V_l = 0.25$, B(11) - bilayer, $V_l = 0.45$; B(111) trilayer, $V_l = 0.62$] – CM method ... 319

9.1.4. Stress-strain curve of sisal fabric/polyester composites [S(1)-sisal; monolayer, $V_l = 0.32$, S(11) - bilayer; $V_l = 0.58$ S(111) trilayer, $V_l = 0.80$] – CM method ... 319

9.1.5. Effect of layering pattern and volume fraction on the tensile strength of banana and sisal fabric composites [L-longitudinally cut sample; T- transversely cut sample] (CM) .. 320

9.1.6. Schematic representations of a typical plain weave fabric 321

9.1.7. Flexural stress-strain graph of sisal fabric composites (S1- sisal, monolayer; $V_l = 0.32$, S11 - bilayer; $V_l = 0.58$, S111 - trilayer; $V_l = 0.80$) CM ... 324

9.1.10. Effect of layering pattern and fibre volume fraction on tensile strength of the composites. (B l&t; banana fabrics, longitudinal and transverse arrangement in alternate layers, S l&t; sisal fabrics, longitudinal and transverse arrangement in alternate layers)...327

9.1.11. Effect of layering pattern and fibre volume fraction on flexural strength of the composites (B l&t; banana fabrics, longitudinal and transverse arrangement in alternate layers, S l&t; sisal fabrics, longitudinal and transverse arrangement in alternate layers)...329

9.1.12. Effect of layering pattern and fibre volume fraction on impact strength of the composites (B l&t; banana fabrics, longitudinal and transverse arrangement in alternate layers, S l&t; sisal fabrics, longitudinal and transverse arrangement in alternate layers)...330

9.1.15. Tensile, flexural and impact strength of bilayer banana composite prepared by RTM, Vf = 0.46...333

9.1.16. Flexural stress-strain curve of resin transfer moulded sisal fabric Composites (RS1, RTM; sisal- monolayer, RS11- RTM sisal –bilayer, RS111; RTM- sisal trilayer - L-longitudinally cut sample)...335

9.1.18. Effect of layering pattern and volume fraction on the impact strength of sisal fabric composites by RTM [L-longitudinally cut sample; T- transversely cut sample]..337

9.2.1. Effect of layering pattern on storage modulus of sisal fabric reinforced polyester composites by compression moulding (S1 – sisal ; monolayer, Vf = 0.32, S11-sisal; bilayer - Vf = 0.58, S111- sisal ; trilayer- Vf = 0.80) L-longitudinal test specimen...347

9.2.2. Effect of layering pattern on storage modulus of banana fabric reinforced polyester composites by compression moulding (B1- banana; monolayer, B11- banana; bilayer, B111- banana; trilayer) L-longitudinal test specimen...348

9.2.3. Effect of layering pattern on storage modulus of banana fabric reinforced polyester composites, where the test samples are cut transverse to the direction of weave (CM) B1-Vf = 0.25, B11- Vf = 0.45, B111- Vf = 0.62..349
9.2.4. Effect of layering pattern on tan δ of sisal fabric reinforced polyester composites by compression moulding [S1-sisal; monolayer – $V_f = 0.32$, S11-sisal; bilayer– $V_f = 0.58$, S111-sisal; trilayer– $V_f = 0.80$] .. 351

9.2.5. Effect of layering pattern on tan δ of banana fabric reinforced polyester composites by compression moulding moulding [B1-banana; monolayer – $V_f = 0.25$, B11-banana; bilayer– $V_f = 0.45$, B111–banana; trilayer– $V_f = 0.60$] .. 352

9.2.6. Effect of tan δ with temperature of transversely cut samples of banana fabric composites prepared by compression moulding (T- transversely cut sample) 353

9.2.7. Effect of frequency with temperature on storage modulus of bilayer banana fabric composites (CM) .. 355

9.2.9. Effect of layering pattern on storage modulus of sisal and banana fabric reinforced polyester composites by resin transfer moulding [B1-banana; bilayer, $V_f = 0.46$, S1-sisal; monolayer; $V_f = 0.31$, S11-sisal; bilayer $V_f = 0.60$, S111-sisal; trilayer; $V_f = 0.81$] .. 357

9.2.10. Effect of layering pattern on tan δ of sisal and banana fabric reinforced polyester composites by resin transfer moulding (S1– $V_f = 0.31$, S11– $V_f = 0.60$, S111– $V_f = 0.81$, B11– $V_f = 0.46$) .. 358

9.2.11. Effect of layering pattern on loss modulus of sisal and banana fabric reinforced polyester composites by resin transfer moulding .. 360