LIST OF FIGURES

Figure 1.1 The basic filtering mechanism of FSS structure for E-vector (a) parallel and (b) orthogonal to the metallic dipole [9].

Figure 1.2 The common FSS element shapes [2].

Figure 1.3 The effect of oblique angle incidence on the geometrical parameters of FSS structure [99].

Figure 1.4 The inductive components of FSS structure with (a) perpendicular and (b) parallel polarized wave incidence [99].

Figure 2.1 The unit-cell configuration of SSLFSS structure.

Figure 2.2 The effect of w/λ on the resonance frequency on (a) 1-5 GHz (b) 12-18 GHz and (c) 22-32 GHz frequency range.

Figure 2.3 The frequency response on the S_{21} (magnitude in dB) parameter for different AOIs.

Figure 2.4 The scattering parameters of SSLFSS structure with $d = 38.7065$ mm, $p = 50$ mm, and $w = 6$ mm at 3 GHz.

Figure 2.5 The EC representation of SSLFSS structure.

Figure 2.6 The controlled reflection coefficient at 3 GHz.

Figure 2.7 The value of controlled reflection coefficient in the range of 12-18 GHz.

Figure 2.8 The effect of geometrical parameters of SSLFSS structure on $|S_{21}|$ parameter.

Figure 2.9 The transmission parameter of the SSLFSS structure with Thermocol dielectric support.

Figure 2.10 The transmission response of SSLFSS structure with $p = 11.1772$ mm, $d = 4.21149$ mm and $w = 0.3$ mm.

Figure 2.11 The unit-cell configuration of SSLFSS structure (a) bandstop and (b) bandpass.

Figure 2.12 The scattering characteristics of the (a) bandstop and (b) bandpass SSLFSS structure in 1-5 GHz band.

Figure 2.13 The frequency selective surface (a) bandstop and (b) bandpass at 22-30 GHz range.

Figure 2.14 The response of (a) bandstop and (b) bandpass FSS at 22-30 GHz band.

Figure 3.1 The generalized synthesis approach for the dielectric backed SSLFSS structure.

Figure 3.2 The comparison of the frequency response of square loop and circular ring FSS structure.
Figure 3.3 The array of (a) single square loop and (b) circular ring FSS structure.

Figure 3.4 The unit-cell configuration of (a) circular ring and (b) proposed modified circular ring FSS structure.

Figure 3.5 The simulated frequency response of proposed structure as predicted in Fig. 3.4(b) over the transmission and reflection coefficients for various values of \(l \) using the (a) CST Microwave Studio and (b) Ansoft HFSS.

Figure 3.6 The effect of AOI on the resonance frequency of proposed FSS structure at S-band for the perpendicular polarized wave using the (a) CST Microwave Studio and (b) Ansoft HFSS.

Figure 3.7 The effect of AOI on resonance frequency of the proposed FSS structure at S-band for parallel polarized wave using (a) CST Microwave Studio and (b) Ansoft HFSS.

Figure 3.8 The reflection and transmission parameters frequency response of the SSLFSS and circular ring FSS structure at 26 GHz.

Figure 3.9 The effect of \(l \) on the frequency response of the proposed modified circular ring FSS structure for various values of \(l \) (mm) using CST Microwave Studio.

Figure 3.10 The effect of AOI on the resonance frequency of the proposed modified circular ring FSS structure at 26 GHz for (a) perpendicular and (b) parallel polarized wave incidence up to 50\(^\circ\) AOI through CST Microwave Studio.

Figure 3.11 Effect of AOI on the resonant frequency of the proposed bandstop FSS structure at 13.5 GHz for (a) perpendicular and (b) parallel polarized wave incidence up to 50\(^\circ\) AOI through CST Microwave Studio.

Figure 4.1 The proposed bandpass modified circular ring FSS structure (a) unit-cell configuration and (b) its equivalent circuit.

Figure 4.2 A simple synthesis technique of bandpass SSLFSS structure.

Figure 4.3 The effect of \(l \) on the resonance frequency of the proposed bandpass FSS structure at 26 GHz.

Figure 4.4 The effect of AOI on the frequency response of proposed FSS structure by simulation using CST Microwave Studio at 26 GHz for (a) perpendicular and (b) parallel polarized incidence wave.

Figure 4.5 The effect of AOI on the frequency response of proposed FSS structure by simulation using CST Microwave Studio at 13.5 GHz for (a) perpendicular and (b) parallel polarized incidence wave.
Figure 4.6 The electric field distribution in the proposed FSS structure at 10.691 GHz for normally incidence (a) perpendicular (b) parallel polarized wave.

Figure 4.7 The effect of perpendicular polarized wave incidence up to 50° AOI on the resonance frequency of the proposed modified circular ring FSS structure at X-band using (a) CST Microwave Studio and (b) Ansoft HFSS.

Figure 4.8 The effect of AOI on the resonant frequency of the proposed FSS structure at X-band for parallel polarized wave using (a) CST Microwave Studio and (b) Ansoft HFSS.

Figure 4.9 The scheme of measurement setup.

Figure 4.10 The comparison of measured and simulated frequency response of the proposed bandpass modified circular ring FSS structure CST Microwave Studio and Ansoft HFSS.

Figure 5.1 The proposed inductive loaded modified circular slot type multiband FSS structure (a) unit-cell configuration and (b) its equivalent circuit.

Figure 5.2 The proposed tri-band FSS structure (a) unit-cell configuration and (b) its equivalent circuit.

Figure 5.3 The frequency response of multiband FSS structure for perpendicular polarized wave incidence up to 50° using (a) Ansoft HFSS and (b) CST Microwave Studio.

Figure 5.4 The frequency response of multiband FSS structure for parallel polarized wave incidence 50° using (a) Ansoft HFSS and (b) CST Microwave Studio.

Figure 5.5 The simulated electric field distribution of the proposed FSS structure using CST Microwave Studio at two different resonance frequencies (a) 14.95 GHz and (b) 25.93 GHz.

Figure 5.6 The frequency response of the s-parameters of the FSS structure shown in Fig. 5.2 at normal wave incidence in terms of transmission-line model using ADS.

Figure 5.7 The frequency response of transmission/reflection parameters of proposed structure using CST Microwave Studio up to 50° AOI for (a) perpendicular and (b) parallel-polarized wave.

Figure 6.1 The unit-cell configuration of an azimuthally periodic wedge-shaped metallic vane loaded circular ring FSS structure [158].

Figure 6.2 The radial optimization of proposed structure through simulation, keeping the width (w_2) is fixed and radially increasing the width (w_1), in
Ku band using (a) CST Microwave Studio (b) Ansoft HFSS and, (c) Ansoft Circuit Simulator.

Figure 6.3 The radial optimization of the proposed structure through the simulation, keeping width (w_1) fixed and increasing the width (w_2) by using (a) CST Microwave Studio and (b) Ansoft HFSS and, (c) Ansoft Circuit Simulator in Ku band.

Figure 6.4 The effect of increase in the number of vanes on resonance frequency and 3-dB reflection/transmission bandwidth through the (a) CST Microwave Studio, (b) Ansoft HFSS, and (c) Ansoft Circuit Simulator.

Figure 6.5 The effect of electric field at different AOI on the resonance frequency and 3-dB reflection/transmission bandwidth of the proposed structure using (a) CST Microwave Studio, (b) Ansoft HFSS, and (c) Ansoft Circuit Simulator.

Figure 6.6 The equivalent circuit diagram of the azimuthally periodic wedge shaped circular ring FSS structure.

Figure 6.7 The frequency response of proposed bandpass FSS structure for perpendicular polarized wave at different AOI in S-band using (a) CST Microwave Studio and (b) Ansoft HFSS.

Figure 6.8 The frequency response of proposed bandpass FSS structure for parallel polarized wave at different AOIs using in S-band (a) CST Microwave Studio and (b) Ansoft HFSS.

Figure 6.9 The frequency response of proposed bandpass FSS structure for perpendicular polarized wave at different AOI in Ku-band using (a) CST Microwave Studio and (b) Ansoft HFSS.

Figure 6.10 The frequency response of proposed bandpass FSS structure for parallel polarized wave at different AOI in Ku-band using (a) CST Microwave Studio and (b) Ansoft HFSS.

Figure 6.11 The frequency response of proposed bandpass FSS structure for perpendicular polarized wave at different AOI in Ka-band using (a) CST Microwave Studio and (b) Ansoft HFSS.

Figure 6.12 The frequency response of proposed bandpass FSS structure for parallel polarized wave at different AOI in Ka-band using (a) CST Microwave Studio and (b) Ansoft HFSS.

Figure 6.13 The electric field distribution of the proposed bandpass FSS structure at (a) 3.360 GHz, (b) 15.174 GHz and (c) 25.2 GHz.