CONTENTS

Abstract viii-ix
List of Publications x
List of Figures xv-xix
List of Tables xx

CHAPTER - 1 1-20

Introduction

1.1. Introduction
1.2. General properties of ZnO
1.3. Some ZnO nanostructures
 1.3.1. ZnO Nanosheets and their applications
 1.3.2. ZnO flower-like structures and their applications
 1.3.3. ZnO nanoparticles and their applications
1.4. Synthesis methods for ZnO nanostructures
1.5. Characterization techniques
1.6. Thesis outline

CHAPTER – 2 21-50

Synthesis and characterizations

2.1. Synthesis of ZnO nanosheets
 2.1.1. Morphology Control
 2.1.1.1. Effect of precursor and alkali concentration
 2.1.1.2. Effect of reaction time
 2.1.1.3. Effect of surfactant
 2.1.2. Characterizations
 2.1.2.1. X-Ray Diffraction (XRD)
2.1.2.2. Transmission Electron Microscope (TEM)
2.1.2.3. UV-Vis Spectroscopy
2.1.2.4. Fourier Transform Infrared Spectroscopy (FTIR)
2.1.2.5. Photoluminescence Spectroscopy (PL)

2.2. Synthesis of ZnO flower-like structures
2.2.1. Morphology Control
 2.2.1.1. Effect of precursor and alkali concentration
 2.2.1.2. Effect of reaction time
 2.2.1.3. Effect of surfactant
2.2.2. Characterizations
 2.2.2.1. X-Ray Diffraction (XRD)
 2.2.2.2. Transmission Electron Microscope (TEM)
 2.2.2.3. UV-Vis Spectroscopy
 2.2.2.4. Fourier Transform Infrared Spectroscopy (FTIR)
 2.2.2.5. Photoluminescence Spectroscopy (PL)

2.3. Synthesis of ZnO nanoparticles
2.3.1. Scanning Electron Microscope (SEM)
2.3.2. X-Ray Diffraction (XRD)
2.3.3. UV-Vis Spectroscopy
2.3.4. Photoluminescence Spectroscopy (PL)

CHAPTER – 3

ZnO nanocrystals and their photocatalytic activity

3.1. Introduction
3.2. Experimental procedure
3.3. Results and Discussion
 3.3.1. Growth mechanism of ZnO nanocrystal in C₂H₅OH
and H_2O medium

3.3.2. Investigation of different aggregation tendencies of ZnO nanocrystals in H_2O and $\text{C}_2\text{H}_5\text{OH}$ mediums

3.3.3. Photocatalytic activity
 3.3.3.1. Background of photocatalytic activity
 3.3.3.2. Photocatalytic performance of ZnO nanosheets and flower-like structures: organic pollutant removal
 3.3.3.3. Photocatalytic mechanism

3.4. Summary

CHAPTER - 4 70-80

Enhancing the Numerical Aperture of Lenses Using ZnO Nanostructures-based Turbid Media

4.1. Introduction

4.2. Experimental details
 4.2.1. Fabrication of ZnO structures: flower-like, nanoparticles and microstructure based turbid film
 4.2.2. Experimental setup details

4.3. Results and Discussion
 4.3.1. Measurement of NA and transmission
 4.3.2. Principle of enhancement of NA

4.4. Summary

CHAPTER – 5 81-91

Visible-light Photodetectors based on ZnO nanostructures

5.1. Introduction

5.2. Experimental details
5.3. Result and Discussion

5.3.1. Experimental setup

5.3.2. Performance of ZnO nanostructure-based photodetector

5.3.3. Photodetector Mechanism

5.4. Summary

CHAPTER – 6

Summary and future suggestions

References