TABLE OF CONTENTS

LIST OF PUBLICATIONS	vii
LIST OF FIGURES	xi
LIST OF TABLES	xvi
ABSTRACT	xvii

CHAPTER 1

Introduction

1.1 Introduction

1.1.1 Spectrum access techniques

1.2 Related Work

1.2.1 Power control

1.2.2 Game theory

1.2.3 Multiple antennas

1.2.4 Medium access control (MAC) protocol

1.3 Problem Formulation

1.4 Thesis Organization

CHAPTER 2

Proposed MAC Protocol for Distributed Cognitive Radio Network

2.1 Introduction

2.2 MAC Protocol and System Design

2.2.1 System model

2.2.2 Proposed MAC protocol

2.3 Performance Analysis

2.3.1 Sensing-sharing analysis

2.3.2 Contention analysis

2.3.3 Data transmission and throughput analysis

2.4 Simulation Results

2.5 Conclusion
CHAPTER 3
Distributed Cognitive Radio MAC Protocol in Perfect and Imperfect Channel Sensing Scenario
3.1 Introduction
3.2 Problem Formulation
3.3 Mathematical Modeling
 3.3.1 Sensing-sharing interval analysis
 3.3.2 Contention interval analysis
 3.3.3 Data transmission interval analysis
3.4 Energy Efficiency
 3.4.1 Energy consumed in sensing-sharing interval
 3.4.2 Energy consumed in contention interval
 3.4.3 Energy consumed in data transmission interval
3.5 Results and Discussion
3.6 Conclusion
CHAPTER 4
Throughput Enhancement using Bandwidth Wastage in MAC Protocol of the Distributed Cognitive Radio Network
4.1 Introduction
4.2 System Model
 4.2.1 Proposed method
4.3 Performance Analysis
 4.3.1 Sensing-sharing analysis
 4.3.2 Data transmission and throughput analysis
4.4 Results and Discussion
4.5 Conclusion
CHAPTER 5
5.1 Introduction
5.2 System Model
5.3 Problem Formulation and Performance Analysis
5.4 Simulation Results
5.5 Conclusion

CHAPTER 6
Cognitive Radio User Frame-Structure for Data Loss Rate Reduction and Throughput Maximization
6.1 Introduction
6.2 System Model and Problem Formulation
 6.2.1 Cognitive receiver structure
 6.2.2 Frame structure
6.3 Throughput Analysis
6.4 Simulation Results
6.5 Conclusion

CHAPTER 7
Channel Capacity of Cognitive Radio in Fading Environment with CSI and Interference Power Constraints
7.1 Introduction
7.2 Spectrum Sharing System
 7.2.1 System model
 7.2.2 Spectrum sensing module
7.3 Rate and Power Adaptation Policy for M-QAM
7.4 Effect of Channel Conditions
7.5 Simulation Results
7.6 Conclusion

CHAPTER 8
Conclusion and Future Scope

References