PLANAR GRAPH DRAWING
2.1 Introduction

Visualization of an arbitrary large graph $G = (V, E)$, where V is the set of participating vertices and E is the set of the edges, is a tedious process and the shape of the graph becomes unpredictable if no systematic procedures are followed. De Fraysseix, Pach and Pollack [4] relied upon triangulation of the graph as a first step to visualize a graph. Chrobak and Payne [5] improved this and presented an algorithm as a generalization to the triangulation. These methods tend be problematic in realizing a decent looking large graph on the plane. We have improved the algorithm and it embeds a bi-connected graph of n vertices on a grid of size $(2n-4) \times (n-2)$ in linear time on a plane. This new form of the graph is topologically equivalent to the original graph and facilitates further study.

2.2 Chrobak & Payne Algorithm for Drawing of Planar Graphs

The algorithm has two steps: the first step calculates the canonical ordering of the vertices (which is the order in which the vertices will be processed), and the second step then constructs the drawing incrementally, adding vertices to the current drawing one by one according to the canonical ordering thus induced.

![Fig. 2.1 Sample output of the Chrobak & Payne Algorithm on a Non-Triangulated Graph](image-url)
2.2.1 Canonical Ordering

Let G be a planar graph drawn on the plane. Let u, v, w be vertices on the boundary of its exterior face. The canonical ordering is a labeling of the vertices of G in a sequence $v_1, v_2, ..., v_n$ such that $v_1 = u$, $v_2 = v$, $v_n = w$ and for every $3 \leq k \leq n$ the following hold:

(a) the subgraph G_{k-1} of G induced by $v_1, v_2, ..., v_{k-1}$ is bi-connected, and the boundary of the exterior face is a cycle C_{k-1} containing the edge (u, v).

(b) The vertex v_k is on the exterior face of G_{k-1}, and has at least two neighbours in G_{k-1}. Moreover, all of its neighbours in G_{k-1} are consecutive on the path $G_{k-1} - (u, v)$.

![Fig. 2.2 A Canonically Ordered Vertices Graph](image)

Fraysseix, Pach and Pollack [4] proved that such an ordering exists for all planar graphs for planar embedding. A planar embedding is a data structure that describes the circular ordering of neighbours of each vertex in some planar
drawing. The ordering algorithm works by processing each of the vertices and its neighbours. Vertices are labeled and the labels are updated when visiting the neighbours. The labels assume numerical values as under:

-1, initially assigned, meaning not yet visited
0, meaning visited once
t >0, meaning visited more than once and those of its neighbours already visited form t intervals in the circular order around the vertex given by the planar embedding.

We start by choosing two vertices, calling them v_1 and v_2. Processing a vertex v_k is always carried out by visiting each of its neighbours and updating the labels of those neighbours that are not yet processed. Let v be neighbour of v_k. Then the possibilities are as under:

case (i): v is labeled -1, in which case we re-label it as 0.

case (ii): v is labeled as 0. This means that v has one neighbour, say u, which has already been processed. Check if v_k is adjacent to u in the circular ordering of neighbours around v (given by the planar embedding). If so, label v with 1, else label it with 2.

case (iii): v is labeled $t > 0$. Check the two vertices adjacent to v_k in the circular ordering around v. If both have already been processed, label v with $t-1$ (i.e., two intervals have now been merged). If one has been processed and the other not then v's label remains t. If have not been processed, label v with $t+1$.
After processing v_k (for $k \geq 2$), a vertex with label 1 is chosen to be v_{k+1} in the canonical ordering (any such vertex serves the purpose), and is thereby processed. This continues until no such v_{k+1} is found.

2.2.2 The Placement Step

The second phase of the algorithm places the vertices on the grid points of a chosen mesh. Let $Q = (x_1, y_1)$, $R = (x_2, y_2)$ be two grid points and $\mu(Q, R)$ be the intersection point of the lines with slope +1 from Q and slope -1 from R. That is:

$$\mu(Q,R) = \frac{1}{2}(x_1 - y_1 + x_2 + y_2, -x_1 + y_1 + x_2 + y_2).$$

Define the norm between Q and R as $MD(Q,R) = |x_2 - x_1| + |y_2 - y_1|$. If the norm is even, then $x_1 - y_1 + x_2 + y_2$ and $-x_1 + y_1 + x_2 + y_2$ are also even. This means that if Q and R are grid points with even norm, then $\mu(Q,R)$ must be a grid point too. Let $P(v) = (x(v), y(v))$ denote the current position of vertex v on the grid. With each such v associate a set $L(w)$ as follows:

- $P(v_1) \leftarrow (0,0)$; $L(v_1) \leftarrow \{v_1\}$;
- $P(v_2) \leftarrow (2,0)$; $L(v_2) \leftarrow \{v_2\}$;
- $P(v_3) \leftarrow (1,1)$; $L(v_3) \leftarrow \{v_3\}$;

v_1, v_2, v_3 are placed on a triangle. The subgraph G_k is formed by adding vertex v_k to v_1, v_2, ..., v_{k-1} at each step. At any k^{th} step of the algorithm, the contour C_k of G_k, will be of triangle like shape, and the following properties hold:

1. $P(v_1) \leftarrow (0,0)$ and $P(v_2) \leftarrow (2k-4,0)$
2. $C_k = w_1, w_2, ..., w_m$ for some m, where $w_1 = v_1$, $w_m = v_2$ and $x(w_1) < x(w_2) < ... < x(w_m)$.
3. The slope of each segment $(P(w_i), P(w_{i+1}))$ for $1 \leq i < m$, is either ± 1.

Assume that this is true upto k-1 steps. We will now add v_k to the drawing. By canonical ordering, we can assume that v_k is such that its neighbours on C_{k+1} are consecutive, and we can denote them by $w_p, ..., w_q$. The inclusion can be accomplished with the following scheme:

for each $v \in \bigcup_{i=p}^{q-1} L(w_i)$ do $x(v) \leftarrow x(v) + 2$; (i.e., move such v to right by 2)

for each $v \in \bigcup_{i=p+1}^{q-1} L(w_i)$ do $x(v) \leftarrow x(v) + 1$; (i.e., move such v to right by 1)

$P(v_k) \leftarrow \mu(P(w_p), P(w_q))$

$L(v_k) \leftarrow \{v_k\} \bigcup \bigcup_{i=p+1}^{q-1} L(w_i)$

Now, by (p3) we know that if w_i and w_j are any two vertices on the contour, and $I = P(w_i)$ and $J = P(w_j)$ are their current positions on the grid, then $MD(I, J)$ is even. As a result of this, $\mu(P(w_p), P(w_q))$ is always a grid point. We can ensure that all v_k's neighbours will be visible from $P(v_k)$ by moving some of the points $P(w_i)$ to the right. With each vertex v that moves we also move the set $L(v)$, consisting of the vertices that reside below it. This is needed to keep the part that has already been drawn without crossings intact in shape. The sets $L(v)$ can be binary trees rooted at v. At step k, the offspring of v_k are the vertices $w_{p+1}, ..., w_{q-1}$, which are the roots of the trees $L(w_{p+1}), ..., L(w_{q-1})$. The left-child holds the first offspring of a vertex, and the right-child holds the first sibling to the right of the vertex. To achieve constant time for updating this structure at step k, the contour chain is kept in the right-child array and we continue with the following checks:

if $w_{q-1} \neq w_p$ then $\text{leftchild}(v_k) \leftarrow w_{p+1}$ else $\text{leftchild}(v_k) \leftarrow \text{null}$

if $w_{q-1} \neq w_p$ then $\text{rightchild}(w_{q-1}) \leftarrow \text{null}$
All other right-child connections are inherited automatically from the contour. The contour chain is updated with rightchild \((w_p) \leftarrow v_k\)
rightchild \((v_k) \leftarrow w_q\). The calculation of the x coordinate of \(v_k\) is carried out relative to that of \(w_p\), and at the end of the algorithm these relative coordinates are translated into real ones by a single traversal of the binary tree. Since the vertices of the graph are processed according to their canonical ordering, a planar drawing is guaranteed.

2.3 Suggested Refinement

First we note that the two requirements of the canonical ordering cannot be fulfilled when the graph is not triangulated, and the graph \(G_k\) needs to be bi-connected. However, if we take a cycle on \(n\) vertices as input, any possible \(G_{n-1}\) will be a path that is not bi-connected. Secondly, it requires \(v_{k+1}\) to have consecutive neighbours on the path \(C_k = (v_1, v_2)\).

![Fig. 2.3 Example of a non-triangulated graph](image_url)

However, consider Fig 2.3 with exterior face is \(v_1, v_2, x\). Here the canonical ordering must have \(v_4 = x\) implying \(C_3 = v_1, y, v_2\). But the neighbours of \(v_4\) do not form a consecutive interval on \(C_2\) as \(y\) is not a neighbour of \(x\). So we need a
broader meaning for canonical ordering, to enable us to draw a graph vertex by vertex in the placement step and it may be called bi-connected canonical ordering.

2.3.1 Right Hand Walk On Regions

Given an orientation for the edge \((u,v)\) and \((v,u)\), both of which are indicated by the line segment \(uv\), we speak of the right face and left face of \((u,v)\) on a walk with the region on right or left. Note that these might be the same as in the case where \(v\) has no incident edges other than \((u,v)\). The boundary of each face in the drawing consists of a single connected polygonal line. We will produce a boundary list for each face as under:

2.3.2 Procedure RightHandWalk:

Mark all edges of \(G\) as unvisited;

While there are unvisited edges do the following

Choose any unvisited edge \((u,v)\) to initialize a new list \(b\) with \(v_0 = u\) and \(v_1 = v\)

Set \(i \leftarrow 1\)

Repeat

Take as \(v_{i+1}\) the vertex immediately following \(v_{i-1}\) in the counter-clockwise circular ordering of neighbours around \(v_i\)

Add \(v_{i+1}\) to the list \(b\)

Mark the edge \((v_i, v_{i+1})\) as visited

Set \(i \leftarrow i + 1\)

Until \((v_i, v_{i+1}) = (v_0, v_1)\)

Close the list \(b\)

End-while

The whole process can be viewed as a person walking along the edges of the graph choosing the rightmost option at every vertex. The resulting list \(b(f)\)
represents the boundary of a face f in a clockwise direction. Clearly the right face of a directed edge (u,v) is also the left face of the dual edge (v,u).

Thus if f is a face and $b(f) = v_0, v_1, ..., v_m$ is the list produced by the right hand walk, the reversed list is another representation of the boundary of f, traversing it in a counter-clockwise fashion, and f is the left face of each of the edges (v_1, v_{i-1}). We refer to the reversed lists as counter-clockwise boundary lists, or just boundary lists for short. Similarly we define a LeftHandWalk algorithm.

2.3.3 Cut-Vertex

If in a Graph G, a vertex v, after removal of its edges splits the Graph G into unconnected subgraphs then v is called a cut-vertex of G. Each directed edge appears in exactly one boundary list. An undirected edge might appear in two different boundary lists, once in each direction, or it might appear in the same boundary list in both directions. As far as vertices go, unless v is a cut-vertex of G, it appears at most once in each boundary list.

If v is a cut-vertex, each one of the boundary lists corresponding to the components of G that include v will contain v more than once. To construct the boundary lists, we do not need the planar drawing itself – all we need is a planar embedding as we only use the circular ordering of neighbours around each vertex.

2.3.4 Bi-Connected Canonical Ordering

Let G be a bi-connected planar graph drawn in the plane. Let G_k be a connected subgraph of G and let $C_k = w_1, w_2, ..., w_m$ be the counter-clockwise boundary list of the exterior face of G_k. Let v be a vertex in $G - G_k$ that lies in
the exterior face of G_k. Since G is planar, that neighbour must lie on C_k and we can thus assume it is w_i for some $i, 1 \leq i \leq m$. We say that v has a right support if v immediately follows w_{i+1} in the counter-clockwise circular ordering around w_i; it has a left support if v immediately precedes w_{i-1} in the counter-clockwise circular ordering around w_i.

Further v has a legal support on C_k if $i = 1$ and v has a right support, or $i = m$ and v has a left support, or $1 < i < m$ and v has a left support or a right support. We observe that since C_k is cyclic in nature, the starting point of the list, w_1, can be fixed arbitrarily along C_k.

A bi-connected canonical ordering is a labeling of the vertices of G in a sequence v_1, \ldots, v_n, such that $v_1 = u$ and $v_2 = v$, and for every $2 \leq k \leq n$ the following hold:

(a) Let G_k be induced by v_1, \ldots, v_k. Then G_k is connected, and the edge (v_2, v_1) is on C_k, the contour of G_k. Fix w_1 to be v_1, so that we write C_k as $v_1, w_1, \ldots, w_m = v_2$.

(b) All vertices in $G - G_k$ lie within the exterior face of G_k.

(c) For $k > 2$, the vertex v_k has one or more neighbours in G_{k-1}. If v_k has exactly one neighbour in G_{k-1}, then it has a legal support on C_{k}.

We now device a scheme to find a bi-connected canonical ordering.

Let C_{k-1} be the contour of G_{k-1} induced by $v_1 = w_1, w_2, \ldots, w_m = v_2$. Let v be a vertex outside G_{k-1} with a neighbour in G_{k-1}. Then v is in the exterior face
of G_{k-1}, and therefore lies on the exterior boundary of the larger graph $G_{k-1} \cup v$. Since G_{k-1} is connected, v is not a cut-vertex of $G_{k-1} \cup v$, and it therefore appears exactly once along the boundary list of the exterior face of $G_{k-1} \cup v$. By the planarity of G, the neighbours of v in G_{k-1} must all reside on C_{k-1}, and thus u is really w_{i_1} for some appropriate $1 \leq i_1 \leq m$. If v has p neighbours on C_{k-1}, we can list them similarly in their counter-clockwise circular ordering around v_1 as $w_{i_1}, w_{i_2}, ..., w_{i_p}$. A vertex x may appear more than once in the list C_{k-1}. This could happen if it is a cut vertex of the graph G_{k-1}, and C_{k-1} goes around a component attached to x.

Thus, if x is one of the neighbours of v, we should be more precise in defining the index i_j that satisfies $x = w_{i_j}$. Obviously there is one index q that satisfies $x = w_q$, and such that on the clockwise circular ordering around x the order is w_{q-1}, v, w_{q+1}. This q serves as i_j. Suppose $w_{i_1}, w_{i_2}, ..., w_{i_p}$ be the neighbours of v on the contour $C_{k-1} = w_1, w_2, ..., w_m$ as defined above. Then $i_1 < i_2 < ... < i_p$.

An example is given in Fig.2.4. The meaning is that the circular ordering around v coincides with the order along the boundary list C_{k-1}. Bearing in mind that boundary lists are circular in nature, the particular starting point w_1, chosen for C_{k-1}, the list of neighbours of v on C_{k-1} does not wrap around the circular list C_{k-1}.
2.4 Requirements for Canonical Ordering of Vertices

We employ three arrays A, indexed by the faces of the graph; N and F, indexed by the vertices. At the kth stage, $A(f)$ contains the number of edges from $b(f)$ that are in G_{k-1}; $N(v)$ contains the number of neighbours of vertex v in G_{k-1}, and $F(v)$ represents the number of \textit{ready} faces that have v as their only vertex outside G_{k-1}. A face f that is not the exterior face of G is \textit{ready} if $A(f) = |b(f)| - 2$, i.e., $b(f)$ has only two edges not in G_{k-1}. Let $v \notin G_{k-1}$. Denote $N(v)$ by p, and let $w_{i_1}, w_{i_2}, \ldots, w_{i_p}$ be the neighbours of v on C_{k-1}. Also, let f_j be the left face of the edge (w_{i_j}, v), for $1 \leq j \leq p$ and L_v be the circular ordering of all neighbours of v.

Fig 2.4. Illustration for Ordered Traversal – Canonically Ordered Vertices
2.4.1 Properties of Number of Neighbours $N(v)$

(i) $N(v) > F(v)$.

(ii) $N(v) = F(v) + 1$ if and only if all the faces f_j, for $2 \leq j \leq p$, are ready.

(iii) If $N(v) = F(v) + 1$, then the neighbours of v in G_{k-1} form a single interval in the list L_v.

Proof:

(i). $F(v)$ contains the ready faces that have v as their sole vertex outside G_{k-1}. The boundary list of such a face has an edge of the form (w_{i_j}, v), with w_{i_j} in G_{k-1}. Thus each of the ready faces is the left face of one of the edges (w_{i_j}, v), such that the set of ready faces found for $F(v)$ is a subset of the p faces f_1, f_2, \ldots, f_p. Hence, $N(v) = p \geq F(v)$. To prove that $N(v) > F(v)$, we will show that f_1 cannot be a ready face. Note that $b(f_1)$ is the boundary list of f_1 on G_k, so that $b(f_1)$ contains the edge (w_{i_1}, v). If $b(f_1)$ has only v as a vertex not in G_{k-1}, it is entirely contained in $G_{k-1} \cup v$. By our choice of w_{i_1}, the left face of the edge (w_{i_1}, v) in the subgraph $G_{k-1} \cup v$ is the exterior face of this subgraph. Now $G_{k-1} \cup v$ contains the edge (v_2, v_1), which is on the boundary of the exterior face of the entire graph. Thus (v_2, v_1) is on the boundary of the exterior face of the subgraph $G_{k-1} \cup v$ too, and it therefore belongs to $b(f_1)$. However, in the entire graph G, the face whose boundary list contains the edge (v_2, v_1) is the exterior face, which means that f_1 must be the exterior face of G. The
exterior face of the entire graph G was excluded from the definition of a ready face. Hence f_1 cannot be a ready face.

(ii). Assume $N(v) = F(v)+1$. The above counting shows that each of the $p-1$ faces f_2, \ldots, f_p must be ready. Conversely, since the set of faces accounted for in $F(v)$ consists of those faces from among f_2, \ldots, f_p that are ready, then if they are all ready we must have $F(v) = p-1$, which is $N(v) = F(v)+1$.

(iii). Let $N(v) = F(v)+1$, and assume that L_v contains a fragment of the form $w_{i_{j-1}}, \ldots, u, w_{i_j}$ for some $2 \leq j \leq p$, meaning that there are vertices that separate a pair of adjacent neighbours of v in G_{k-1}. We recall that $w_{i_1}, w_{i_2}, \ldots, w_{i_p}$ is the list of neighbours of v in G_{k-1}, ordered counterclockwise around v. Thus $u \not\in G_{k-1}$ (otherwise it would be one of $w_{i_{j-1}}$ or w_{i_j}). Now, since u follows w_{i_j} in the clockwise circular ordering around v, the boundary list $b(f_j)$ must contain the edges (w_{i_j}, v) and (v, u). This implies that f_j has two vertices outside G_{k-1} which are v and u, and therefore it cannot be a ready face. This contradicts the assumption that $N(v) = F(v)+1$, thus completing the proof.

2.5 Refined Algorithm for Canonical Ordering of Vertices

The arrays are updated always as under:

(1) **Update v_k's neighbours.** For each neighbour v of v_k that is outside G_k, increment $N(v)$ by 1.

(2) **Update faces.** There are two faces to update. The left face of the edge (w_{i_1}, v_k), which is f_1, and the right face of (w_{i_p}, v_k), which we shall call f_{p+1}. For these increment $A(f_1)$ and $A(f_{p+1})$ by 1.
(We recall that \(w_{i_1}, w_{i_2}, \ldots, w_{i_p} \) is the ordered list of neighbours of \(v_k \) on \(C_{k-1} \). Also, it might be the case that \(f_1 = f_{p+1} \).)

(3) Update ready faces. If a face \(f \) becomes ready as a result of (2), find the only vertex \(v \) along \(b(f) \) that is outside \(G_k \), and increment \(F(v) \) by 1.

2.5.1 Algorithm for building the new bi-connected canonical ordering

Initialize all three arrays, \(A \), \(N \) and \(F \) to 0.

Take as \((v_1, v_2) \) any edge on the boundary of the exterior face of \(G \).

Initialize a list of vertices with \(v_1 \) and \(v_2 \), and update their neighbours as in (1) above.

Set \(A(f) \) to 1 for \(f \), the left face of \((v_1, v_2) \).

If \(f \) is a triangle with vertices \(v_1, v_2, v_3 \), set \(F(v_3) \) to 1, since \(f \) is ready.

For \(k = 3 \) to \(n \) do the following

If there is a vertex \(v \) not in the list, with \(N(v) \geq 2 \) & \(N(v) = F(v) + 1 \) then

add it to the list as \(v_k \)

else

find a vertex \(v \) not on the list, with legal support and \(N(v) = 1 \), and add it to the list as \(v_k \)

Update the data structures as in (1),(2),(3) above for \(v_k \).

end-for.
2.5.2 Further Observations

- The vertex v_k is drawn only after at least one of its neighbours has already been drawn in G_{k-1}. This prevents the situation where concave polygons might appear in the drawn diagram.

- The drawing is generally bound by $(2n-4) \times (n-2)$ size grid. The algorithm starts the placement step with the edge (v_1, v_2) drawn with length 2, and it increases this length by 2 at each step, ending with length $(2n-4)$. The entire drawing can be enclosed in a triangle whose base is the edge (v_1, v_2), and whose sides emanate from v_1 and v_2 with slopes +1 and -1 respectively. Hence the drawing's maximum height is $(n-2)$.

- Our canonical ordering requires the graph to be bi-connected. There are examples of planar non-biconnected graphs for which no bi-connected
canonical orderings exist. However, every graph can be made bi-connected by adding dummy edges using the following scheme:

- Given any two disconnected components, add a dummy edge to connect arbitrarily chosen vertices, in each of them.
- Given two components with a common cut-vertex v, add a dummy edge that connects arbitrary neighbours of v, one from each component.

Deciding connectivity and bi-connectivity, and identifying bi-connected components can all be done in linear time. Once we draw the graph after the completion of the placement step, we remove the dummy edges.

2.6 Analysis of the Algorithm

For each $2 \leq k \leq n$, let v_1, v_2, \ldots, v_k be the sequence of vertices generated by the algorithm up to the stage k. Then the conditions (a),(b),(c) in the definition of bi-connected canonical ordering are satisfied, and also there exists a vertex v outside G_k, such that either $N(v) \geq 2$ and $N(v)=F(v)+1$, or $N(v) = 1$ and v has a legal support. Thus the algorithm is capable of drawing the graph completely.

We apply induction on k. For $k=2$, G_2 consists of the single edge (v_1, v_2). All the conditions are trivially clear. Now assume that we have built the sequence $v_1, v_2, \ldots, v_{k-1}$ such that conditions (a),(b),(c) hold. The graph G is connected, so there are vertices outside G_{k-1} with $N(v)>0$. First assume that all these vertices have $N(v)=1$. Let v be such a vertex, and let w_i be its sole neighbour on C_{k-1}. If v itself does not have a legal support, then the vertex t_1 that immediately follows w_{i+1} on the counter-clockwise circular ordering of neighbours around w_i satisfies $N(t_1)=1$ and has a right support, and the vertex t_2 that immediately precedes w_{i-1},
satisfies $N(t_2)=1$ and has a left support. In this case, one of t_1 or t_2 must have a legal support, and it can therefore be chosen to be v_k.

Fig. 2.6 Illustration for Building of Legal Support

Let v be a vertex outside G_{k-1}, which has p neighbours in G_{k-1}. As before, we let $C_{k-1} = w_1, w_2, \ldots, w_m$, where $w_1 = v_1$ and $w_m = v_2$. We denote the p neighbours of v by $w_{i_1}, w_{i_2}, \ldots, w_{i_p}$ as they constitute a sub-series of C_{k-1}. Let us call the fragment of C_{k-1} between w_{i_1} and w_{i_p} as the span of v on C_{k-1}. The length of the span is $i_p - i_1$ (which is the number of vertices therein).

Now let there be some vertices in the graph with $N(v) \geq 2$, and assume, for contradiction, that none of these vertices satisfies $N(v) = F(v) + 1$. Let v be a vertex with $N(v) \geq 2$ whose span on C_{k-1} is the shortest among the vertices with $N(v) \geq 2$. Let $w_{i_1}, w_{i_2}, \ldots, w_{i_p}$ be a span of v on C_{k-1}. By our assumption, v satisfies $N(v) = F(v) + 1$, implying that one or more of these faces f_2, \ldots, f_p is not ready. Let f_{j+1}, for some $1 \leq j \leq p-1$, be one if these, and let H be the subgraph of G induced by the closed polygonal line. Let e be the left face of the edge $(w_{i_{j+1}}, v)$ in the subgraph H. If e was a face in the original graph G too, it must have been ready,
since it has only two edges outside G_{k-1}. However, by our assumptions, this is impossible. Consequently the region e in G is not connected, and hence there is a path P in G that divides e in two.

We claim that P cannot be a single edge. First, if P were an edge connecting v to some vertex w on C_{k-1}, then w must be between w_{ij} and w_{ij+1}, contradicting the order in the span of v. Second, if P were an edge connecting two w_i's, then P would belong to the subgraph G_{k-1}, and as such, it could not be inside the exterior face of G_{k-1}. This is impossible due to the induction hypothesis that v is in the exterior face of G_{k-1}, so that the region e (which includes P) is in that exterior face too. Thus, P must have at least one internal vertex, call it x. Since we assume that G is bi-connected, there is a path Q in G that connects x and w_{ij} without passing through v (otherwise v is a cut-vertex of G). Let w_1 be the first point on Q (when coming from x) that is in G_{k-1}, and let y be the point preceding w_1 on Q. Since w_1 is on the boundary of e and x is in e, y must also be in e.

![Fig.2.7 Illustration for Building of Legal Support](image)
Now, if \(y \) satisfies \(N(y) > 1 \), we have found in \(y \) a contradiction to the minimality assumption on \(v \). Here is why: First, we claim that \(y \)'s span is part of \(v \)'s. To see this, note that every edge emanating from \(y \) must reside entirely in \(e \) (by planarity), and it therefore can only lead to points in \(e \) or on its boundary. The intersection of the boundary of \(e \) with \(C_{k-1} \) is the sequence \(S = w_{i_1}, \ldots, w_{i_{k-1}} \), and hence \(y \)'s span can only be a sub-sequence of \(S \), while \(S \) itself is part of \(v \)'s span. This implies that the length of \(y \)'s span cannot exceed the length of \(v \)'s; if it is strictly smaller, we have a contradiction to the choice of \(v \). If \(v \) and \(y \) happen to have exactly the same span, the circular ordering around \(w_i \) (taken counterclockwise) must be \(w_{i+1}, \ldots, y, \ldots, v \), which contradicts the second part of the minimality assumption on \(v \).

If \(N(y) = 1 \), so that \(y \) has only one neighbour on \(C_{k-1} \), we will find a contradiction. Again we have two cases to consider. If \(w_1 \neq w_{i_j} \), let \(z \) be the neighbour of \(w_1 \) immediately following \(w_{i-1} \) along the clockwise circular ordering of neighbours around \(w_1 \). This \(z \) might be \(y \) itself, or a neighbour of \(w_1 \) that is closer to \(w_{i-1} \). Now, by planarity, \(z \) is also in \(e \), and if \(N(z) > 1 \), we have in \(z \) a contradiction to the minimality assumption on \(v \), by the same arguments as above. If \(N(z) = 1 \), \(z \) has a legal left support on \(w_{i-1} \), and therefore it can be chosen as \(v_k \), which again contradicts our assumptions.

If \(w_1 = w_{i_j} \), we take \(z \) to be the neighbour of \(w_i \) immediately following \(w_{i+1} \) along the counter-clockwise circular ordering of neighbours around \(w_i \). This \(z \) is in \(e \), and contradicts our assumptions similarly (using a right support for the case \(N(z) = 1 \)).