CONTENTS

<table>
<thead>
<tr>
<th>No.</th>
<th>Particular</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>Review of literatures</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>V. anguillarum</td>
<td>4</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Historical perspective</td>
<td>4</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Taxonomy of and nomenclature</td>
<td>5</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Typing of V. anguillarum</td>
<td>5</td>
</tr>
<tr>
<td>2.1.4</td>
<td>Distribution</td>
<td>6</td>
</tr>
<tr>
<td>2.1.5</td>
<td>Pathogenicity</td>
<td>8</td>
</tr>
<tr>
<td>2.1.6</td>
<td>Virulence factors</td>
<td>9</td>
</tr>
<tr>
<td>2.1.6.1</td>
<td>Outer membrane proteins</td>
<td>12</td>
</tr>
<tr>
<td>2.1.6.2</td>
<td>Siderophores</td>
<td>14</td>
</tr>
<tr>
<td>2.1.6.3</td>
<td>Enzymes</td>
<td>15</td>
</tr>
<tr>
<td>2.1.7</td>
<td>Cultivation and identification of Vibrio anguillarum</td>
<td>16</td>
</tr>
<tr>
<td>2.1.7.1</td>
<td>Identification by conventional methods</td>
<td>17</td>
</tr>
<tr>
<td>2.1.7.2</td>
<td>Identification by molecular techniques</td>
<td>18</td>
</tr>
<tr>
<td>2.1.8</td>
<td>Treatment</td>
<td>20</td>
</tr>
<tr>
<td>2.2</td>
<td>Fish immune system</td>
<td>21</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Innate immune system</td>
<td>22</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Adaptive immune system</td>
<td>22</td>
</tr>
<tr>
<td>2.3</td>
<td>Vaccine</td>
<td>24</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Fish vaccination</td>
<td>25</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Whole cell vaccine</td>
<td>25</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Subunit vaccine</td>
<td>26</td>
</tr>
<tr>
<td>2.3.4</td>
<td>DNA vaccine</td>
<td>27</td>
</tr>
<tr>
<td>2.3.5</td>
<td>Strategy of vaccination</td>
<td>28</td>
</tr>
<tr>
<td>2.4</td>
<td>Bioinformatics</td>
<td>30</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Sequence analysis tools</td>
<td>30</td>
</tr>
<tr>
<td>2.4.1.1</td>
<td>Sequence alignment</td>
<td>31</td>
</tr>
</tbody>
</table>
2.4.1.2 Signal peptide prediction 31
2.4.1.3 Protein model prediction 32
2.4.1.4 Antigenic determinants prediction 35
2.4.2 Phylogenetic analysis 37

3. Materials & Methods 38
3.1 Reference culture and growth conditions 38
3.2 Fish samples 39
3.3 Bacterial isolation 39
3.4 Biochemical tests for *V. anguillarum* identification 39
3.4.1 Gram stain 39
3.4.2 Motility test 42
3.4.3 Oxidase test 42
3.4.4 Sensitive to O/129 43
3.4.5 Oxidation/Fermentation test 43
3.4.6 Amino acid decarboxylase test 44
3.4.7 Methyl red 45
3.4.8 Voges proskauer test 45
3.4.9 Indol test 45
3.4.10 Salt tolerance test 46
3.5 Storage of bacteria 47
3.5.1 Storage in minimal media 47
3.5.2 Storage in glycerol broth 47
3.6 Preparation of crude lysate from bacterial isolates 48
3.7 Preparation of genomic DNA by (CTAB) method 48
3.8 DNA concentration and purity 49
6.9 PCR reaction 49
6.9.1 Detection of PCR by agarose gel electrophoresis 49
6.9.2 Preparation of 1.5% agarose gel 49
6.9.3 Purification of PCR products 52
3.10 Cloning 52
3.10.1 Ligation with cloning vector 52
3.10.2. Transformation
3.10.3. Screening for the desired clone
3.11. Sequencing
3.12. Bioinformatics analysis
3.12.1. Primer designing
3.12.2. Signal peptide Identification
3.12.3. Outer membrane protein sequence similarity
3.12.4. Outer membrane protein secondary structure prediction
3.12.5. 3D structure of the recombinant protein
3.12.6. Protein antigenic determinants prediction
3.12.7. Phylogenetic tree construction
3.13. Cloning for expression
3.13.1. Ligation with expression vector
3.13.2. Transformation
3.11.3. Screening for the desired clone
3.13.4. Checking for the orientation of the insert
3.14. Recombinant protein expression
3.14.1. Protein expression
3.14.2. SDS-polyacrylamide gel electrophoresis
3.14.3. Preparation of SDS-PAGE apparatus
3.14.4. Purification of recombinant proteins
3.15. Generation of polyclonal antibodies
3.15.1. Titration of polyclonal antibodies
3.15.2. Characterization of polyclonal antibodies by Western blotting
3.16. Fish vaccination
3.16.1. Fish samples
3.16.2. Vaccine preparation
3.16.2.1. Recombinant protein
3.16.2.2. Heat killed vaccine
3.16.3. Lethal dose50 (LD_{50}) estimation
3.16.4. Vaccination schedule
3.16.5. Challenge study
3.16.6. Protection efficiency
3.16.7. Serum collection
3.16.8. Serum inhibitory assay
3.17. Real time PCR study for the \textit{ompK} gene function
3.17.1. Effect of growth conditions
3.17.2. RNA extraction
3.17.3. Degradation DNA contaminant from RNA
3.17.4. cDNA synthesis of gene of interest
3.17.5. Primer optimization
3.17.6. Amplification efficiency validation
3.17.7. Amplification by real-time PCR
3.17.8. Data analysis

4. Result
4.1. Bacterial isolation
4.2. Molecular confirmation of \textit{V. anguillarum} isolates
4.3. Detection of \textit{ompU} gene
4.4. Detection of \textit{ompK} gene
4.5. Detection of \textit{ompV} gene
4.6. Deduction amino acid sequences and signal peptides prediction of
4.7. Cloning in expression vector
4.8. Expression, purification and concentration of recombinant proteins
4.9. Titration of polyclonal antibodies
4.10. Characterization of polyclonal antibodies by Western blotting
4.11. \textit{In silico} characterization of OmpU, OmpK, and OmpV
4.12. Immunization studies with outer membrane proteins
4.12.1. Bacterial inhibitory effect of Vaccinated fish Serum
4.12.2. Fish protection
4.13. Effect of culture conditions on the expression of \textit{ompK} gene
5. **Discussion**

5.1. Isolation and detection of *Vibrio anguillarum*
5.2. Studies on the Outer membrane proteins
5.2.1. Selection of the outer membrane proteins
5.2.2. Amplification cloning and sequencing of the selected genes
5.3. *In silico* study of OmpU, OmpK and OmpV
5.3.1. Secondary and tertiary structure
5.3.2. Signal peptide
5.3.3. Prediction of antigenic sits
5.3.4. Dendogram study
5.4. Production of the recombinant proteins
5.4.1 Cloning and expression of *ompU*, *ompK* and *ompV* genes
5.4.2 Affinity purification of the recombinant proteins
5.4.3. Characterization of polyclonal antibodies by Western blotting
5.5. Fish vaccination
5.6. Real time PCR analysis for *ompK* gene expression

6. **Summary**

7. **Bibliography**

8. **Abstract**