APPENDIX-II

KINEMATICS OF THE Be8 DECAY.

The Be8 nucleus decays in flight into two alpha particles just after emerging from the disintegrating nucleus. The initial kinetic energy of the Be8 and the Q-value of the reaction are shared between the product alpha particles. Let M and E be respectively the mass and the kinetic energy of the Be8 and P its initial momentum along the direction of flight.

Suppose E_1 and E_2 are the kinetic energies of the product alpha particles, and P_1 and P_2 their momenta along the direction of flight, the angle between them being ϕ. Then

$$P^2 = P_1^2 + P_2^2 + 2P_1P_2\cos\phi.$$

For non-relativistic cases this can be written as

$$ME = m(E_1 + E_2) + 2m\sqrt{E_1E_2}\cos\phi.$$

Putting $M = 2m$,

$$E = \frac{E_1 + E_2}{2} + \sqrt{E_1E_2}\cos\phi \quad \text{and} \quad Q = E_1 + E_2 - E = \frac{E_1 + E_2}{2} - \sqrt{E_1E_2}\cos\phi.$$

Case I. When the Be8 decays at rest, the alpha particles will recoil from each other in opposite directions. If the line of decay is perpendicular to the direction of flight of the Be8, the two alpha particles will have equal energy and the angle ϕ between them will have the maximum value

$$E_1 = E_2 = \frac{E + Q}{2}.$$

From (1) \[E = \frac{E + Q}{2} \left(1 + \cos \phi \right) \]

(3) \[\cos \phi = \frac{E - Q}{E + Q} \]

Case II. When the line of decay is along the direction of flight of the \(\text{Be}^8 \), \(\phi \) will be zero, and the difference in energy of the two alpha particles will be maximum.

Putting \(\phi = 0 \) in (1),
\[2E = E_1 + E_2 + 2\sqrt{E_1 E_2} , \]

therefore,
\[(4) \quad \sqrt{E_1} + \sqrt{E_2} = \sqrt{2E} . \]

Also,
\[2(E_1 + E_2 - Q) = E_1 + E_2 + 2\sqrt{E_1 E_2} . \]

Hence
\[EQ = E_1 + E_2 - 2\sqrt{E_1 E_2} , \]

therefore,
\[(5) \quad \sqrt{E_1} - \sqrt{E_2} = \sqrt{EQ} . \]

From (4) and (5) \[E_1 - E_2 = 2\sqrt{EQ} . \]

Also since \[E_1 + E_2 = E + Q , \]

We get
\[E_1 = \frac{E + Q}{2} + \sqrt{EQ} \quad \text{and} \quad (6) \]
\[E_2 = \frac{E + Q}{2} - \sqrt{EQ} . \]