Contents

Preface v
Acknowledgements vii
Contents ix
Index of Figures xiii
Index of Tables xvii

Chapter 1: Introduction 1 – 23

1.1 The Background 1
1.2 The Scenario 2
 1.2.1 Principle of satellite-based navigation 2
 1.2.2 GPS and GLONASS 5
 1.2.3 Integration of GPS and GLONASS 9
1.3 The Motivation 10
1.4 Previous Works Done and Scopes of New Studies 12
1.5 Contribution 18
 1.5.1 On availability of navigation satellites in India 18
 1.5.2 On reliability of satellite navigation system for positioning in India 18
 1.5.3 On effect of averaging on navigation satellite data 19
 1.5.4 Optimum update rate for dGPS operation 19
 1.5.5 On effect of PDOP variation on position accuracy 19
 1.5.6 Unique algorithm for Dilution of Precision (DOP) calculation 19
 1.5.7 A semi-empirical model to improve the time transfer accuracy for multi-channel standalone geodetic receivers 20
 1.5.8 Use of multi-channel standalone geodetic receivers for time transfer 20
 1.5.9 Relation between PDOP and time error 20
 1.5.10 Effect of atmospheric scintillation on time transfer accuracy 21
 1.5.11 Calibration of single-channel GPS TTU 21
1.6 Brief organisation of the thesis 21

Chapter 2: Availability of GPS and GLONASS satellite signals 24 – 53 in India

2.1 Introduction 24
2.2 Satellite Orbit Design and Availability of Satellites 26
2.3 Deployment Status of GPS satellites and constellation status 29
Chapter 3: Studies on Geometrical Configuration of Available 54 - 82 Satellites

3.1 Introduction 54
3.1.1 GPS fundamental error equation 54
3.2 Contribution Presented by the Author in This Chapter 59
3.3 Studies on Distribution of PDOP Values in India 61
3.3.1 Using receivers those uses four satellites for navigation solution 61
3.3.1.1 Typical PDOP variations 62
3.3.1.2 Distribution of PDOP values 62
3.3.2 Using GPS+GLONASS receivers those uses more than four satellites for navigation solution 64
3.3.2.1 Experimental set up 66
3.3.2.2 Results and discussions 66
3.4 Studies on Impact of GPS PDOP on Position Error 71
3.4.1 Background 71
3.4.2 Experimental set up and morphology of data 72
3.4.3 Observation and discussions 73
3.5 Algorithm to Evaluate GPS PDOP from Elevation and Azimuth of Satellites 76
3.5.1 Formulations 76
3.5.2 Computational results and discussions 79
3.6 Concluding Remarks 82
Chapter 4: Studies on the Accuracy in Positioning by GPS, GLONASS and GPS+GLONASS in India

4.1 Introduction

- 4.1.1 Expected navigation performance for GPS
- 4.1.2 Expected navigation performance for GLONASS

4.2 Contribution Presented by the Author in this Chapter

4.3 Studies on the Position Accuracy in Presence of SA

- 4.3.1 Position accuracy and 2-d error distribution pattern
- 4.3.2 Effect of averaging on position accuracy

4.4 Position Accuracy after Removal of SA

4.5 Conclusion on Achievable Position Accuracy in Presence and in absence of SA

4.6 Study on the Update Rate of Correction Message in dGPS mode

- 4.6.1 Introduction
- 4.6.2 Experimental set up
- 4.6.3 Observation and results

4.7 Concluding Remarks

Chapter 5: Studies on Time Transfer using GPS and GLONASS

5.1 Introduction

5.2 Time, Time Interval, Requirements and Time Scales

5.3 GPS Time and Time transfer using GPS

- 5.3.1 GPS as a clock in one way mode
- 5.3.2 Common view mode of GPS
- 5.3.3 Closure around the world
- 5.3.4 Relativistic Effects

5.4 GLONASS Time and Time Scales

5.5 Contributions presented by the author in this chapter

5.6 Effect of Selective Availability on GPS time transfer

5.7 A Semi Empirical Model to Improve Time Transfer Accuracy using Multi-channel Geodetic GPS receiver in Standalone On-line mode

- 5.7.1 The semi empirical model
- 5.7.2 Relation between position error and time error
- 5.7.3 Experimental set up
- 5.7.4 Results and discussion
- 5.7.5 Dependence of the model on the accuracy of antenna position coordinates
- 5.7.6 The model in post-SA era

5.8 Study on the Effect of PDOP on GPS Time Transfer

- 5.8.1 Experimental set up
- 5.8.2 Data analysis and results
- 5.8.3 Conclusions
5.9 Study on Utility of Different Multi-Channel Geodetic Receivers Used for Standalone On-Line Time Transfer
 5.9.1 Experimental set up 141
 5.9.2 Results and Analysis 142
 5.9.3 Conclusions 148
5.10 Calibration GPS Time Transfer Units
 5.10.1 Experimental set up 150
 5.10.2 Data Processing 152
 5.10.3 Results 153
 5.10.4 Discussion and conclusion 157
5.11 Effect of Ionospheric Scintillation on GPS Time Transfer— a Study
 5.11.1 Experimental set-up 157
 5.11.2 Observation and analysis of data 159
 5.11.3 Conclusion 166
5.12 Concluding Remarks 166

Chapter 6: Conclusion and scope for future works 169-176

6.1 On Availability and Reliability of Radio Navigation Satellite Signals for Positioning 169
6.2 On Use of Radio Navigation Satellite Signals for Standalone On-line Time Transfer 172
6.3 Future Scope of Works 174

References 177-182

List of Publications of the author on which the dissertation is based 183-185

Appendix A: Comparison of GPS and GLONASS 186
Appendix B: Index of Terms 187