CONTENTS

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>i</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>iii</td>
</tr>
</tbody>
</table>

1. Introduction

1.1 Overview of VLSI technology
1.2 Evolution
1.3 Developments in VLSI Technology
1.4 VLSI Design styles
 1.4.1 Full custom VLSI
 1.4.2 Semi custom
 1.4.3 Programmable logic devices (PLDs)
1.5 Classification of programmable logic devices
 1.5.1 Simple programmable logic devices
 1.5.2 High capacity programmable logic devices
 1.5.3 Complex programmable logic devices (CPLDs)
 1.5.4 Field programmable gate arrays (FPGAs)
1.6 FPGA manufacturers and their specialties
1.7 Review of the literature
1.8 Scope and purpose of the present work

2. Hardware description languages

2.1 Overview of HDLs
2.2 Importance of HDLs
2.3 Trends in HDLs
2.4 Design flow in HDLs
2.5 Types of HDLs
 2.5.1 Verilog HDL
 2.5.2 VHDL (Very high speed HDL)
 2.5.3 Design units
3. Hardware Features

3.1 Introduction 29
3.2 Features of the SPARTAN 3E FPGA 29
3.3 Microprocessors - overview 30
 3.3.1 Evolution 31
 3.3.2 Early microprocessor 33
 3.3.3 Capabilities and advantages of microprocessors 34
 3.3.4 Applications 35
3.4 Design of the Proposed microprocessor 35
 3.4.1 Data-path 36
 3.4.2 Control-Unit 40
3.5 Top-level system operation 40
3.6 Liquid Crystal Display (LCD) 42
3.7 LED (Light emitting diode) 44
3.8 Seven Segment Display (SSD) 45

4. Software Features, Results & Conclusions

4.1 Features of the ISEweb pack 46
4.2 Getting started with Xilinx ISE 9.1i Webpack 46
4.3 Simulation 58
4.4 VHDL coding 60
4.5 Results and conclusions 72
4.6 Future scope of the work 80

REFERENCES

PUBLICATIONS