TABLE OF CONTENTS

Acknowledgement
Table of Contents
Abbreviations

<table>
<thead>
<tr>
<th>Chapter 1.</th>
<th>AN INTRODUCTION TO HALOGENATION OF ORGANIC COMPOUNDS USING NEW REAGENT SYSTEMS</th>
<th>XX-XX</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Introduction</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Iodination</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>Bromination</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>Chlorination</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>General procedure for the chlorination of aromatic compounds</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Monochlorination</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Dichlorination</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>Effects of surfactant</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>Effect of concentration of HCl</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>Effect of concentration of NaClO₃</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Halogens facts</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Properties of halogens</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Reactivity</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>Oxidizing power</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Type of Halogenation</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Substitution Halogenation</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--------------------------</td>
<td></td>
</tr>
<tr>
<td>4.1.1</td>
<td>Aromatic Substitution</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Addition Halogenation</td>
<td></td>
</tr>
<tr>
<td>4.2.1</td>
<td>Oxyhalogenation</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Bromination as commercial process</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Brominated organic compounds</td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td>Industrial-importance of some brominated compounds</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Chlorination (FACTS method)</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Industrial-importance of some chlorinated compounds</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Iodination</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Motivation/Objective</td>
<td></td>
</tr>
</tbody>
</table>

Chapter 2. REVIEW OF LITERATURE: BROMINATING REAGENT SYSTEMS KNOWN IN CHEMICAL LITERATURE

<table>
<thead>
<tr>
<th>2.</th>
<th>Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The bromination of activated aromatic substrates and acylation of alcohols using PEG KBr₃</td>
</tr>
<tr>
<td>2.2</td>
<td>N-Bromosuccinimide</td>
</tr>
<tr>
<td>2.3</td>
<td>Bromination of alkynes and alkenes</td>
</tr>
<tr>
<td>2.4</td>
<td>Synthesis of Arylboronic Esters</td>
</tr>
<tr>
<td>2.5</td>
<td>Hexamethylenetetramine–bromine (HMTAB)</td>
</tr>
<tr>
<td>2.6</td>
<td>Aprotic solvents and bromination</td>
</tr>
<tr>
<td>2.7</td>
<td>Oxibromination of selected pharmaceuticals</td>
</tr>
</tbody>
</table>
2.8 Photo-bromination reactions in sunlit saline surface waters

2.9 Bromide as reagent

2.9.1 Vanadium and molybdenum as halogenating reagent

2.9.2 Preparation of Venlafaxine (IX)

2.9.3 Quinoxaliniunm bromochromate

2.9.4 Preparation tefluthrin from 2, 3, 5, 6-tetrafluorodimethylolbenzene

2.9.5 Lewis Acid

2.9.6 NaBr and NaI, halogenating reagent for aromatics

2.9.7 Terminal oxidant (H₂O₂)

3. Halogenating reagents

3.1 Electrochemical bromination of germacrene D

3.2 Synthesis of 2,3,4-trifluoro-5-iodo and 2,3,4-trifluoro-5-bromo benzoic acid

Chapter 3. Synthesis of cetylpyridinium tribromide (CetPyTB) reagent by noble synthetic route and bromination of organic compound using CetPyTB

<p>| 1. | Abstract |
| 2. | Objective |
| 3. | Introduction |
| 4. | Results and Discussion |
| 5. | EXPERIMENTAL SECTION |
| 5.1 | Reagents and Analytics |
| 5.2 | Protocol for Optimization of CetPyTB during synthesis |</p>
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3</td>
<td>Procedure for Preparation of CetPyTB using Na$_2$MoO$_4$ and Hydrogen Peroxide</td>
</tr>
<tr>
<td>5.4</td>
<td>Influence of quantity of reagent on the end product yield and melting point of 3, 5-DBSA</td>
</tr>
<tr>
<td>6.</td>
<td>Spectral data (1H NMR, Infrared and Mass Spectrometry) of brominated compounds</td>
</tr>
<tr>
<td>7.</td>
<td>Conclusions</td>
</tr>
</tbody>
</table>

Chapter 4. OXIDATIVE CHLORINATION OF AROMATIC COMPOUNDS IN AQUEOUS MEDIA

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Abstract</td>
</tr>
<tr>
<td>2.</td>
<td>Objective</td>
</tr>
<tr>
<td>3.</td>
<td>Introduction</td>
</tr>
<tr>
<td>4.</td>
<td>Results and Discussion</td>
</tr>
<tr>
<td>4.1</td>
<td>Effect of surfactant</td>
</tr>
<tr>
<td>4.2</td>
<td>Effect of concentration of HCl</td>
</tr>
<tr>
<td>4.3</td>
<td>Effect of concentration of NaClO$_3$</td>
</tr>
<tr>
<td>4.4</td>
<td>Mechanism</td>
</tr>
<tr>
<td>5.</td>
<td>EXPERIMENTAL</td>
</tr>
<tr>
<td>5.1</td>
<td>Materials and instrumentation</td>
</tr>
<tr>
<td>5.2</td>
<td>Common chlorination procedures for aromatic compounds</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Monochlorination</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Dichlorination</td>
</tr>
<tr>
<td>6.</td>
<td>SPECTROSCOPIC DATA OF FEW CHLORINATED AROMATIC COMPOUNDS</td>
</tr>
<tr>
<td>7.</td>
<td>Conclusions</td>
</tr>
<tr>
<td>Chapter 5.</td>
<td>BROMINATION OF COMMERCIALLLY-SIGNIFICANT AROMATIC COMPOUNDS USING AN AQ. AlBr₃-Br₂ REAGENT SYSTEM AS A SUSTAINABLE FAST AND ECONOMICAL BROMINATING REAGENT</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Section I.

Ecologically-safe and Fast Bromination of industrially-significant Aromatic Compounds in water using an recyclable AlBr₃-Br₂ Reagent System as an Prompt and Sustainable Brominating Reagent

1.	Objective
2.	Introduction
3.	Result and Discussion
3.1	Reaction Mechanism

4.	EXPERIMENTAL SECTION
4.1	All-Purpose
4.2	Unambiguous bromination process for synthesization of 2, 6-Dibromo-4- nitroaniline (II)
4.3	Method for Regenerating and Reprocessing of AlBr₃ (Recycle 1)
4.4	Procedure for Recycle 2, 3 and 4
4.5	The Synthesis route for 2-Bromo-4-nitroaniline (1k)
4.6	The Synthesis path of 2, 4, 6- Tribromophenol (1d)
4.7	Investigational Route for Ultraviolet –Visible Assessments

| 5. | The categorization data (1H NMR, Infrared and Mass Spectroscopy) achieved for various representative compounds |
6. Conclusions

Section II. A Direct and simplistic Bromination of commercially-important Organic Compounds in aqueous media by Eco-friendly AlBr$_3$-Br$_2$ reagent system

1. Objective

2 Introduction

3. Result and Discussion

3.1 Reaction conditions screening

3.2 The impact on yield and dissolving purpose of DBNA by mole proportion of Br$_2$

3.3 Impact of AlBr$_3$-Br$_2$ mole proportion on yield and dissolving purpose of 2, 6-dibromo-4-nitroaniline (DBNA)

3.4 Stirring

4. EXPERIMENTAL

4.1 Reagents and analytics

4.2 A typical synthesis path of 2, 6-dibromo-4-nitroaniline

4.3 The filtrate was put something aside for the Later runs. The item was accomplished as yellow powder. (Recycle 1)

4.4 The Route for Recycle/Reutilize 2, 3 and 4

5. The classification information (1H NMR, Infrared and Mass Spectroscopy) accomplished for different delegate aromatics

6. Conclusions

Chapter 6. SUMMARY AND CONCLUSION

BIBLIOGRAPHY
<table>
<thead>
<tr>
<th>LIST OF PUBLICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>