List of Figures

<table>
<thead>
<tr>
<th>Fig. No.</th>
<th>Name of Figure</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Surface roughness (R_y) for all the conditions tested ($r_e = 0.4 \text{mm}$)</td>
<td>13</td>
</tr>
<tr>
<td>2.2</td>
<td>Comparison of the fitted values and the estimated values with Eq.</td>
<td>14</td>
</tr>
<tr>
<td>2.3</td>
<td>The fitted values vs. the observed values</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>Predicted values versus observed values</td>
<td>16</td>
</tr>
<tr>
<td>2.5</td>
<td>Deviation of RA, CNN and Equation values from the observed values</td>
<td>16</td>
</tr>
<tr>
<td>2.6</td>
<td>Normal probability plot of residuals for Ra data.</td>
<td>17</td>
</tr>
<tr>
<td>2.7</td>
<td>Plot of residuals vs. predicted response for Ra data.</td>
<td>17</td>
</tr>
<tr>
<td>2.8</td>
<td>Mold part</td>
<td>18</td>
</tr>
<tr>
<td>2.9</td>
<td>Cutting with various edge geometry CBN tools</td>
<td>19</td>
</tr>
<tr>
<td>2.10</td>
<td>Central composite design for three factors</td>
<td>20</td>
</tr>
<tr>
<td>2.11</td>
<td>Response contours of surface roughness and metal removal Q</td>
<td>20</td>
</tr>
<tr>
<td>2.12</td>
<td>Inputs and outputs of the network</td>
<td>21</td>
</tr>
<tr>
<td>2.13</td>
<td>Conventional geometry</td>
<td>22</td>
</tr>
<tr>
<td>2.14</td>
<td>Wiper shape</td>
<td>22</td>
</tr>
<tr>
<td>2.15</td>
<td>Wiper insert design: r_{e1} and r_{e2} are the radii of wiper curvature</td>
<td>24</td>
</tr>
<tr>
<td>2.16(a)</td>
<td>Effective rake angle = 6°, nose radius = 0.4 mm</td>
<td>26</td>
</tr>
<tr>
<td>2.16(b)</td>
<td>Effective rake angle = 6°, nose radius = 0.8 mm</td>
<td>26</td>
</tr>
<tr>
<td>2.16(c)</td>
<td>Effective rake angle = 6°, nose radius = 1.2 mm</td>
<td>26</td>
</tr>
<tr>
<td>2.17</td>
<td>Type of edge preparations used in CBN and ceramic cutting tools</td>
<td>27</td>
</tr>
<tr>
<td>2.18</td>
<td>3D surface graph for the surface roughness at Coolant = 2.4 l/min, as speed and feed varies</td>
<td>28</td>
</tr>
<tr>
<td>2.19</td>
<td>3D surface graph for the surface roughness at feed = 50 mm/min as speed and coolant varies</td>
<td>29</td>
</tr>
<tr>
<td>2.20</td>
<td>3D surface graph for the surface roughness at speed = 300 rpm as coolant and feed varies</td>
<td>29</td>
</tr>
</tbody>
</table>
2.21 Microstructure of the Al–SiC (20 p) MMC

2.22 Coating layers of Insert 1

2.23 Coating layers of Insert 2

2.24 Surface roughness profile

2.25 Central composite design for three factors

2.26 Experimental scheme

2.27 Comparison of inserts with conventional and wiper (multi-radii)

2.28 Pre prepared work pieces in AISI 1045 used in turning tests

2.29 Microstructure of Ti–6Al–4V

2.30 CVD coated carbide insert

2.31 Effect of cutting speed and feed on Ra

2.32 Effect of hardness and DOC

2.33 3D surface plots for surface roughness

3.1 Simply supported beams centrally loaded

3.2 Variation of V_σ and V_δ with L^2/b ratio for cast iron and mild steel

3.3 Variation of angle of twist as a function of aperture shape and size

3.4 Comparison of cross section deformation with and without end covers

3.5(a) Stiffness variation with different ribbing arrangement with and without end covers

3.5(b) Stiffness variation as a function of different ribbing arrangement

3.6 Columns with vertical internal and external stiffeners

3.7 Columns with horizontal stiffeners

3.8 Effect of bolt arrangement and external bottom stiffeners

3.9 External vertical bottom stiffeners

3.10 Effect of stiffener base width on stiffness/weight ratio and rigidity

3.11 Lumped model of portal frame

3.12 Lumped models
4.1 Bed with meshing and load 92
4.2 Bed with stress result 93
4.3 Bed with Displacement result 93
4.4 Basic modes of vibration for Bed 93
4.5 Head with meshing and load 98
4.6 Head with Displacement result 98
4.7 Head with Stress result 98
4.8 Basic modes of vibration for Head 99
4.9 Saddle with meshing and load 103
4.10 Saddle with Displacement result 104
4.11 Saddle with Von Mises stress result 104
4.12 Basic modes of vibration for Saddle 105
4.13 Results of sensitivity analysis (Head) 108
4.14 Displacement and stress result after optimization for Head 111
4.15 Displacement result after optimization for Bed 115

5.1(a) Idealized model of surface roughness with sharp corner cutting tool 130
5.1(b) Cross section through surface irregularities 130
5.2 Effect of minor cutting edge angle on surface roughness 132
5.3 Idealized model of surface roughness for round corner tool 132
5.4 Comparison of experimental results with an idealized model of surface roughness 133
5.5 Effect of cutting speed on the surface roughness for turning M.S. 134
5.6 Surface roughness and waviness depending on cooling and lubrication conditions and cutting parameters 136
5.7 Surface roughness tester SJ-400 137
5.8 Wiper inserts edge geometries and improvement in surface roughness 139
5.9 Effect of feed on the effectiveness of a wiper inserts 140
5.10 Fitted value Vs observed value (AISI 1040 steel and Al) 145
5.11 Fitted value Vs observed value (AISI 410 steel and Al) 145
5.12 Relative error of the fitted values vs. Computed values (AISI 1040 steel and Aluminium) 146
5.13 Relative error of the fitted values vs. Computed values (AISI 410 steel and Aluminium) 146
5.14 Comparison of the fitted values and the estimated values (AISI 1040 steel and Aluminium) 146
5.15 Comparison of the fitted values and the estimated values (AISI 410 steel and Aluminium) 147
6.1 3^2 Design 149
6.2 3^3 Design 149
6.3 3 D Response surface showing the expected yield (η) as a function of feed (x_1) and depth of cut (x_2) 152
6.4 A contour plot of a response surface 152
6.5 The sequential nature of RSM 154
6.6 Turning center Jobber X_L 155
6.7 Material: AISI 1040 Steel (500X) 157
6.8 Main effect plot for Roughness 162
6.9 Interaction plot for Roughness 162
6.10 Normal probability plot of Ra 163
6.11 Residual Vs. Fitted surface roughness 162
6.12 Predicted and Experimental values for Surface Roughness 163
6.13 Estimated contour plots for Ra (Const.: r and d) 164
6.14 Estimated contour plots for Ra (Const.: f and d) 164
6.15 Estimated contour plots for Ra (Const.: f and r) 164
6.16 3D surface plot for Ra Vs r & v 164
6.17 3D surface plot for Ra Vs v & f 165
6.18 3D surface plot for Ra Vs v & d 165
6.19 Comparison of experimental and predicated values for Ra 166
6.20 Response optimization for surface roughness parameter 166
6.21 Material: AISI 410 Steel (500X)
6.22 Main effect plot for Roughness
6.23 Interaction plot for Roughness
6.24 Normal prob. plot of residual for Ra
6.25 Residual Vs. Fitted roughness values
6.26 Predicted and Experimental values for Surface Roughness
6.27 Esti. Contour plots for Ra (Const.: r and d)
6.28 Esti. Contour plots for Ra (Const.: f and d)
6.29 Esti. Contour plots for Ra (Const.: f and r)
6.30 3D surface plot for Ra Vs v and f
6.31 3D surface plot for Ra Vs r and v
6.32 3D surface plot for Ra Vs r and d
6.33 Comparison of experimental and predicated values for Ra
6.34 Response optimization for surface roughness parameter
6.35 Material: M.S (500X)
6.36 Main effect plot for Roughness
6.37 Interaction plot for Roughness
6.38 Normal prob. plot of residual for Ra
6.39 Residual Vs. Fitted roughness values
6.40 Predicted and Experimental values for Surface Roughness
6.41 Esti. Contour plots for Ra (Const. r and d)
6.42 Esti. Contour plots for Ra (Const. f and d)
6.43 Esti. Contour plots for Ra (Const. f and r)
6.44 3D surface plot for Ra Vs f and v
6.45 3D surface plot for Ra Vs r & d
6.46 3D surface plot for Ra Vs r & v
6.47 Comparison of experimental and predicated values for Ra
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.48</td>
<td>Experimental scheme</td>
<td>188</td>
</tr>
<tr>
<td>6.49</td>
<td>Response optimization for surface roughness parameter</td>
<td>188</td>
</tr>
<tr>
<td>6.50</td>
<td>Material: Aluminium (100 x)</td>
<td>190</td>
</tr>
<tr>
<td>6.51</td>
<td>Main effect plot for Roughness</td>
<td>194</td>
</tr>
<tr>
<td>6.52</td>
<td>Interaction plot for Roughness</td>
<td>194</td>
</tr>
<tr>
<td>6.53</td>
<td>Normal prob. plot of residual for Ra</td>
<td>195</td>
</tr>
<tr>
<td>6.54</td>
<td>Residual vs. Fitted surface roughness values</td>
<td>195</td>
</tr>
<tr>
<td>6.55</td>
<td>Predicted and Experimental values for Surface Roughness</td>
<td>195</td>
</tr>
<tr>
<td>6.56</td>
<td>Estimated contour plots for Ra (Const.: r and d)</td>
<td>196</td>
</tr>
<tr>
<td>6.57</td>
<td>Estimated contour plots for Ra (Const.: f and d)</td>
<td>196</td>
</tr>
<tr>
<td>6.58</td>
<td>Estimated contour plots for Ra (Const.: f and r)</td>
<td>197</td>
</tr>
<tr>
<td>6.59</td>
<td>3D surface plots for Ra Vs r & v</td>
<td>197</td>
</tr>
<tr>
<td>6.60</td>
<td>3D surface plots for Ra Vs d & f</td>
<td>197</td>
</tr>
<tr>
<td>6.61</td>
<td>3D surface plots for Ra Vs r & d</td>
<td>197</td>
</tr>
<tr>
<td>6.62</td>
<td>Comparison of experimental and predicted values for Ra</td>
<td>198</td>
</tr>
<tr>
<td>6.63</td>
<td>Response optimization for surface roughness parameter</td>
<td>199</td>
</tr>
</tbody>
</table>