CONTENTS

LIST OF TABLES

- i-v

LIST OF FIGURES

- vi-ix

LIST OF PHOTOGRAPHS

- x

CHAPTER 1: INTRODUCTION

1.1. Diarrhea

- 1.1.1. Prevalence of diarrhea
- 1.1.2. Classification of diarrhea
- 1.1.3. Mechanism involved in diarrhea
- 1.1.4. Drug therapy for treating diarrhea
- 1.1.5. Diarrhea in inflammatory disorders of the intestines
 - 1.1.5.1. Microscopic Colitis
 - 1.1.5.1.1. Risk factors for microscopic colitis
 - 1.1.5.1.2. Pathophysiology of diarrhea in microscopic colitis
 - 1.1.5.1.3. Drug therapy for microscopic colitis
 - 1.1.5.2. Inflammatory Bowel Diseases (IBD)
 - 1.1.5.2.1. Risk factors for IBD
 - 1.1.5.2.2. Pathophysiology of diarrhea in IBD
 - 1.1.5.2.3. Drug therapy used in IBD

1.2. Peptic Ulcers Diseases (PUD)

- 1.2.1. Classification of PUD based on the location
- 1.2.2. Prevalence and incidence of PUD
- 1.2.3. Etiology of PUD
- 1.2.4. Drug therapy used in PUD
- 1.2.5. Idiopathic PUD (Non-NSAIDs, non-\textit{H. Pylori} ulcers)

1.3. Herbal medicines

- 1.3.1. History
- 1.3.2. Herbal medicines in India
- 1.3.3. Allopathic medicines over herbal medicines
- 1.3.4. Herbal medicines used in GI disorders
- 1.3.5. Phytoconstituents from plants used in GI disorders
- 1.3.6. Herbal medicine usage and research approaches
CHAPTER 2: RESEARCH ENVISAGED

2.1. Background 31
2.2. Aims and Objective 32
2.3. Plan of work 33

CHAPTER 3: PLANT PROFILE

3.1. Mustard seeds plants 36
 3.1.1. *Brassica nigra* 36
 3.1.2. *Brassica juncea* 39
3.2. *Punica granatum* 42

CHAPTER 4: REVIEW OF LITERATURE

4.1. *Brassica nigra* 47
4.2. *Brassica juncea* 49
4.3. *Punica granatum* 53

CHAPTER 5: EXPERIMENTAL

5.1. Materials
 5.1.1. Chemicals 58
 5.1.2. Instruments 60
5.2 Selection, procurement and authentication of plant materials 62
5.3. Standardization of plant materials 62
5.4. Extraction of plant materials 66
5.5. Physiochemical characterization and phytochemical screening of extracts 69
5.6. *In vitro* antioxidant studies 73
 5.6.1 Diphenyl-2-picrylhydrazyl scavenging assay 74
 5.6.2. Nitric Oxide (NO) scavenging activity by Griess assay 75
5.7. *In vitro* antimicrobial studies 76
 5.7.1. Ditch plate diffusion technique 77
 5.7.2. Agar cup plate diffusion technique 77
5.8. *In vitro* anti-inflammatory activity 78
5.9. *In vitro* anthelmintic activity 79

5.10. Pharmacological Investigations 80

5.10.1. Acute toxicity studies 80

5.10.2. Evaluation of antidiarrheal activity 82

5.10.2.1. Castor oil induced diarrhea 83

5.10.2.2. Charcoal meal test 83

5.10.2.3. Enteropooling assay 84

5.10.3. Evaluation of anti-inflammatory activity 84

5.10.3.1. Carrageenan-induced rat paw oedema test 84

5.10.3.2. Trinitrobenzene sulfonic acid–induced colitis 85

5.10.4. Evaluation of antiulcer activity 88

5.10.4.1. Ethanol induced gastric ulcers 88

5.10.4.2. Aspirin induced gastric ulcers 88

5.10.4.3. Stress induced gastric ulcers 89

5.10.5. Evaluation of analgesic activity 90

5.10.5.1. Acetic acid induced writhing test 90

5.10.5.2. Hot plate method 91

5.11. Development and evaluation of formulations 92

5.11.1. Development and evaluation of granules containing bioactive extract of mustard seeds (BNG) 92

5.11.1.1. Background 92

5.11.1.2. Preformulation studies of BNG 92

5.11.1.3. Formulation of BNG 93

5.11.1.4. Evaluation of BNG 93

5.11.1.5. Pharmacological evaluation of BNG 94

5.11.2. Development and evaluation of enteric coated granules containing bioactive extract of PGFP (ECG-PGFP) 94

5.11.2.1. Background 94

5.11.2.2. Preformulation studies of ECG-PGFP 95

5.11.2.3. Formulation of ECG-PGFP 95

i. Formulation of uncoated granules containing ME-PGFP 95

ii. Evaluation of uncoated granules containing ME-PGFP 95
iii. Enteric coating of uncoated granules containing ME-PGFP

5.11.2.4. Evaluation of ECG-PGFP
5.11.2.5. Pharmacological evaluation of ECG-PGFP

5.11.3. Development and evaluation of effervescent granules containing bioactive extract of PGFP (EFG-PGFP)
5.11.3.1. Background
5.11.3.2. Preformulation studies of EFG-PGFP
5.11.3.3. Formulation of EFG-PGFP
5.11.3.4. Evaluation of EFG-PGFP
5.11.3.5. Pharmacological evaluation of EFG-PGFP

5.11.4. Evaluation parameters of granules

5.12. Quantification of Phytoconstituents in bioactive extracts
5.12.1. Quantification of total phenolics and tannins by Folin-Ciocalteu method
5.12.2. Quantification of total flavonoids by aluminium chloride method

5.13. Standardization of the formulations
5.13.1. Background
5.13.2. Thin Layer Chromatography (TLC) studies
5.13.3. High-performance liquid chromatography (HPLC) studies
5.13.3.1. HPLC method development
5.13.3.2. HPLC method validation
5.13.4. Quantification of the marker compound/s present in the formulation by HPLC

CHAPTER 6: RESULTS AND DISCUSSION

6.1 Studies on Mustard seeds
6.1.1. Procurement and authentication of mustard seeds
6.1.2. Standardization of mustard seeds
6.1.3. Physiochemical evaluation of mustard seeds extracts
6.1.4. Phytochemical screening of mustard seeds extracts
6.1.5. In vitro antioxidant studies of mustard seeds extracts
 i. DPPH scavenging assay
ii. Nitric Oxide scavenging activity by Griess assay

6.1.6. *In vitro* antimicrobial studies of defatted mustard seeds extracts
i. Agar ditch plate diffusion technique
ii. Agar cup plate diffusion technique

6.1.7. *In vitro* anti-inflammatory activity using defatted mustard seeds Extracts

6.1.8. *In vitro* anthelmintic activity using defatted mustard seeds Extracts
6.1.9. Pharmacological investigations of bioactive extract of mustard seeds (CME-DBN)

6.1.9.1 Acute oral toxicity studies of CME-DBN
6.1.9.2. Dose determination and sample preparation for pharmacological activity of CME-DBN
6.1.9.3. Antidiarrheal activity of CME-DBN
 6.1.9.3.1. Castor oil induced diarrhea
 6.1.9.3.2. Charcoal meal test
 6.1.9.3.3. Enteropooling assay
6.1.9.4 Anti-inflammatory activity of CME-DBN
 6.1.9.4.1. Carrageenan-induced rat paw oedema method
 6.1.9.4.2. Trinitrobenzene sulphonic acid (TNBS) induced colitis
6.1.9.5 Antiulcer activity of CME-DBN
 6.1.9.5.1 Ethanol induced gastric ulcers
 6.1.9.5.2. Aspirin induced gastric ulcers
 6.1.9.5.3. Stress induced ulcers
6.1.9.6. Analgesic activity of CME-DBN
 6.1.9.6.1. Acetic acid induced writhings test
 6.1.9.6.2. Hot plate method

6.1.10. Development and evaluation of formulation containing CME-DBN (BNG)

6.1.10.1. Preformulation studies of BNG
6.1.10.2. Formulation development of BNG
6.1.10.3. Evaluation of BNG 172
6.1.10.4. Pharmacological activity of BNG 176
 6.1.10.4.1. Antidiarrheal activity of BNG 176
 i. Castor oil induced diarrhea 176
 ii. Charcoal meal test 178
 iii. Enteropooling assay 178
 6.1.10.4.2. Anti-inflammatory activity of BNG 179
 i. Carrageenan-induced rat paw oedema method 179
 ii. Trinitrobenzene sulphonate (TNBS) induced colitis 181
 6.1.10.4.3. Antiulcer activity of BNG 186
 i. Ethanol induced gastric ulcers 186
 ii. Aspirin induced gastric ulcers 188
 iii. Stress induced ulcers 190
 6.1.10.4.4. Analgesic activity of BNG 192
 i. Acetic acid induced writhing test 192
 ii. Hot plate method 193
6.1.11. Quantification of phytoconstituents in CME-DBN 194
 6.1.11.1. Quantification total phenolics in CME-DBN by Folin-Ciocalteu method 194
 6.1.11.2. Quantification of CME-DBN for content of total flavonoids 194
6.1.12. Standardization of BNG 195
 6.1.12.1. Detection of marker- sinigrin in CME-DBN by TLC studies 195
 6.1.12.2. HPLC studies for analysis of sinigrin in CME-DBN 196
 6.1.12.3. Quantification of sinigrin in BNG 204

6.2. Studies on *Punica granatum* fruit peel (PGFP) 205
 6.2.1. Procurement and authentication of PGFP 205
 6.2.2. Standardization of PGFP 206
 6.2.3. Physicochemical evaluation of PGFP extracts 208
 6.2.4. Phytochemical screening of PGFP extracts 209
6.2.5. *In vitro* antioxidant studies of PGFP extracts

i. DPPH scavenging assay 210

ii. Nitric Oxide scavenging activity by Griess assay 211

6.2.6. *In vitro* antimicrobial studies of PGFP extracts 213

i. Agar ditch plate diffusion technique 213

ii. Agar cup plate diffusion technique 213

6.2.7. *In vitro* anti-inflammatory activity of PGFP extracts 218

6.2.8. *In vitro* anthelmintic activity of PGFP extracts 219

6.2.9. Pharmacological investigations of bioactive extract of PGFP (ME- PGFP)

6.2.9.1 Acute oral toxicity studies of ME-PGFP 222

6.2.9.2. Dose determination and sample preparation for pharmacological activity of ME-PGFP 224

6.2.9.3. Antidiarrheal activity of ME-PGFP 224

i. Castor oil induced diarrhea 224

ii. Charcoal meal test 227

iii. Enteropooling assay 229

6.2.9.4 Anti-inflammatory Activity of ME-PGFP 230

i. Carrageenan-induced rat paw oedema method 230

ii. Trinitro Benzene sulphonylic acid (TNBS) induced colitis 232

6.2.9.5 Antiulcer activity of ME-PGFP 240

i. Ethanol induced gastric ulcers 240

ii. Aspirin induced gastric ulcers 243

iii. Stress induced ulcers 245

6.2.9.6. Analgesic activity of ME-PGFP 248

i. Acetic acid induced writhing test 248

ii. Hot plate method 249

6.2.10. Development and evaluation of enteric coated granules containing ME-PGFP (ECG-PGFP)

6.2.10.1. Preformulation studies of ECG-PGFP 251

6.2.10.2. Formulation and evaluation of ECG-PGFP 251

i. Formulation of uncoated granules containing ME-
PGFP

ii. Evaluation of uncoated granules containing ME-PGFP 252

iii. Enteric coating on uncoated granules containing ME-PGFP 254

iv. Evaluation of enteric coated granules

6.2.10.3. Pharmacological activity of ECG-PGFP 259

6.2.10.3.1. Antidiarrheal activity of ECG-PGFP 259

i. Castor oil induced diarrhea 259

ii. Charcoal meal test 261

iii. Enteropooling assay 262

6.2.10.3.2. Anti-inflammatory activity of ECG-PGFP 263

i. Carrageenan-induced rat paw oedema method 263

ii. Trinitrobenze sulphonic acid colitis 264

6.2.10.3.3. Analgesic activity of ECG-PGFP 270

i. Acetic acid induced writhings test 270

ii. Hot plate method 270

6.2.11. Development and evaluation of effervescent granules containing ME-PGFP (EFG-PGFP) 271

6.2.11.1. Preformulation studies of EFG-PGFP 272

6.2.11.2. Formulation development of EFG-PGFP 272

6.2.11.3. Evaluation of EFG-PGFP 273

6.2.11.4. Pharmacological activity of EFG-PGFP 276

6.2.11.4.1. Antiulcer activity of EFG-PGFP 276

i. Ethanol induced gastric ulcers 276

ii. Aspirin induced gastric ulcers 278

iii. Stress induced gastric ulcers 280

6.2.11.4.2. Analgesic activity of EFG-PGFP 282

i. Acetic acid induced writhing test 282

ii. Hot plate method 283

6.2.12. Quantification of phytoconstituents in ME-PGFP 284
Contents

6.2.12.1. Quantification of total phenolics in ME-PGFP by Folin-Ciocalteu method 284
6.2.12.2. Quantification of total flavonoids in ME-PGFP by Aluminum chloride method 284

6.2.13. **Standardization of ECG-PGFP and EFG-PGFP** 284
6.2.13.1. HPLC studies for analysis of markers-gallic acid, punicalgin and ellagic acid in ME-PGFP 284
6.2.13.2. Quantification of markers-gallic acid, punicalgin and Ellagic acid in ME-PGFP, ECG-PGFP and EFG-PGFP 294

CHAPTER 7: OVERALL DISCUSSION 296
CHAPTER 8: SUMMARY AND CONCLUSION 313

REFERENCES 318

APPENDICES 343
Appendix – I (Authentication letter) 343
Appendix – II (Lists of Publications and List of Patents) 346
Appendix – III (Presentations) 348
Appendix – IV (Abbreviations) 349
Appendix – V (Synopsis) 354

ERRATA I-II