Graphoidal Graphs

In this chapter we study the properties of the intersection graph $\Omega(\psi)$ where ψ is a graphoidal cover or an acyclic graphoidal cover or a path partition of a unicyclic graph. We also obtain a characterization of complete multipartite graphoidal graphs.

Acharya and Sampathkumar [1] introduced the concept of graphoidal graphs. Since $E(G)$ is obviously a graphoidal cover of any graph G, it follows that line graphs are graphoidal. Further Acharya and Sampathkumar [1] verified that all the nine Beineke's forbidden subgraphs of line graphs are graphoidal and hence they conjectured that every graph is graphoidal. Arumugam and Pakkiam [4] have disproved this conjecture and they have obtained a characterization of all bipartite graphoidal graphs (Theorem 1.40). They also characterized $\Omega(\psi)$ where ψ is a minimum graphoidal cover of a tree (Theorem 1.39). Recently Panda and Mohanty [18] considered the more general problem of characterizing intersection graph of a family of internally disjoint paths in a tree (called perfect-vertex graphs or PV-graphs). They have characterized PV-graphs in terms of finite set of forbidden subgraphs. In this chapter, we study the properties of $\Omega(\psi)$ where ψ is a graphoidal cover or an acyclic graphoidal cover or a path partition of a unicyclic graph. We also characterize complete multipartite graphoidal graphs.
Definition 4.1 A graph G is called a path cover graph if there exists a graph H and an acyclic graphoidal cover ψ of H such that $G \cong \Omega(\psi)$.

Lemma 4.2 G is a path cover graph if and only if G is a graphoidal graph.

Proof Obviously any path cover graph is graphoidal. Conversely let G be a graphoidal graph. Then there exists a graph H and a graphoidal cover ψ of H such that $G \cong \Omega(\psi)$. If there exists a cycle C in ψ, we choose an edge e of C and replace H by $H - e$ and C by $C - e$. Repeating this process, we obtain a graph H_1 and an acyclic graphoidal cover ψ_1 of H_1 such that $G \cong \Omega(\psi_1)$ so that G is a path cover graph.

We now proceed to investigate the structure of the path cover graph of a unicyclic graph.

Let G be a unicyclic graph and let m denote the number of vertices of degree at least 3 on C. Let ψ be a minimum acyclic graphoidal cover of G. Then it follows from Theorem 2.8 that every vertex of degree at least 2 except possibly one vertex is interior to ψ. Hence if P_1 and P_2 are any two paths in ψ and $P_1 \cap P_2 \neq \phi$, then there exists a vertex v such that $\deg v \geq 3$ and v lies on both P_1 and P_2. Further there exists at most one pair of paths P_1, P_2 in ψ such that P_1 and P_2 have two common vertices of degree at least 3. In fact such a pair of paths exists only when $m \geq 2$ and there exist two paths P_1 and P_2 in ψ which together cover all the edges of C.
Theorem 4.3 Let G be a unicyclic graph with unique cycle C. Let m denote the number of vertices of degree greater than 2 on C and let n denote the number of vertices of degree 1. Let ψ be a minimum acyclic graphoidal cover of G. Then

(i) Number of vertices in $\Omega(\psi) = \begin{cases}
2 & \text{if } m = 0 \\
 n + 1 & \text{if } m = 1 \\
n & \text{otherwise.}
\end{cases}$

(ii) Number of edges in $\Omega(\psi) = \begin{cases}
1 & \text{if } m = 0 \\
\sum \binom{\deg v - 1}{2} - 1 & \text{if there exist two paths in } \psi \\
\sum \binom{\deg v - 1}{2} & \text{with two vertices of degree at least 3 in common} \\
\sum \binom{\deg v - 1}{2} - 1 & \text{otherwise.}
\end{cases}$

where the summation is taken over all vertices of degree at least 3.

Proof (i) follows from Theorem 2.8.

We now prove (ii). If $m = 0$, then $\Omega(\psi) = K_2$ and the result is trivial.

Suppose $m \geq 1$.

Case i No two paths in ψ have two common vertices of degree at least 3.

Let v be a vertex with $\deg v > 2$. Since every vertex of degree at least 2 except possibly one vertex is interior to ψ, v is an internal vertex of
exactly one path in ψ and hence there exist exactly $\deg v - 1$ paths in ψ containing the vertex v and any two of these paths determine an edge in $\Omega(\psi)$. Hence number of edges in $\Omega(\psi) \geq \sum \binom{\deg v - 1}{2}$. Further every edge in $\Omega(\psi)$ is of the form P_iP_j where $P_i, P_j \in \psi$ and $P_i \cap P_j \neq \emptyset$. Hence there exists a vertex v such that $\deg v \geq 3$ and v lies on both P_i and P_j so that edge P_iP_j is counted in $\sum \binom{\deg v - 1}{2}$ and hence the result follows.

Case ii There is one pair of paths P_i, P_j in ψ which have two common vertices of degree at least 3.

Then the edge P_iP_j is counted twice in $\sum \binom{\deg v - 1}{2}$. Hence the result follows.

Theorem 4.4 Let G be a graph having no isolated vertices and let ψ be an acyclic graphoidal cover of G. Then G is connected if and only if $\Omega(\psi)$ is connected.

Proof Since every acyclic graphoidal cover is a graphoidal cover, the result follows from Theorem 1.38.

Remark 4.5 If ψ is any minimum acyclic graphoidal cover of a unicyclic graph $K_{1,n} + e$ $(n \geq 3)$, then $\Omega(\psi)$ is a complete graph on $n - 1$ vertices.

We now proceed to characterize $\Omega(\psi)$ where ψ is an acyclic graphoidal cover of a unicyclic graph. Theorem 1.39 gives a characterization of $\Omega(\psi)$ where ψ is a minimum graphoidal cover of a tree. We observe that
this theorem is true for any graphoidal cover of a tree, not necessarily minimum.

Theorem 4.6 Let G be a connected graph. Then there exists a unicyclic graph H and an acyclic graphoidal cover ψ of H such that $G \cong \Omega(\psi)$ if and only if one of the following holds.

(i) G is a block graph.

(ii) There exists exactly one block B of G which is not complete and B is an edge disjoint union of complete graphs G_1, G_2, \ldots, G_m such that G_i and G_{i+1} have exactly one common vertex for each $i = 1, 2, \ldots, m-1$ and G_m and G_1 have exactly one common vertex.

(iii) There exists exactly one block B of G which is not complete and B is the union of two complete graphs G_1 and G_2 such that G_1 and G_2 have exactly two common vertices.

Proof Suppose $G \cong \Omega(\psi)$ where ψ is an acyclic graphoidal cover of a unicyclic graph H. Let C be the unique cycle in H. Let m denote the number of vertices of degree at least 3 on C.

Case i $m = 0$.

Then $G = C$. If $|\psi| = 2$, then $\Omega(\psi) = K_2$ which is a block graph. If $|\psi| = 3$, then $\Omega(\psi) = K_3$ which is also a block graph. If $|\psi| \geq 4$, then $\Omega(\psi) = C_n$ ($n \geq 4$) which is an edge disjoint union of K_2 satisfying (ii).

Case ii $m = 1$.
Let \(v \) be the unique vertex of degree greater than 2 on \(C \). Then there exists a path \(P_1 \) in \(\psi \) such that \(v \) is an end vertex of \(P_1 \) and \(E(P_1) \subseteq E(C) \).

If \(P_1 = (u, v) \), then let \(H_1 = H - e \) where \(e \) is the edge \(uv \). Otherwise let \(H_1 \) be the subgraph of \(H \) obtained by deleting all internal vertices of \(P_1 \). Then \(H_1 \) is a tree and \(\psi \setminus \{P_1\} \) is an acyclic graphoidal cover of \(H_1 \).

Hence by Theorem 1.39, \(\Omega(\psi \setminus \{P_1\}) \) is a block graph. Let \(B \) be the block in \(\Omega(\psi \setminus \{P_1\}) \) consisting of all paths in \(\psi \setminus \{P_1\} \) passing through the vertex \(v \). Since \(B \) is complete, \(B \cup \{P_1\} \) forms a block in \(\Omega(\psi) \) and since \(P_1 \) is adjacent to every vertex in \(B \), \(B \cup \{P_1\} \) is complete. Hence \(\Omega(\psi) \) is a block graph.

Case iii \(m \geq 2 \) and there exists a unique pair of paths \(P_1, P_2 \) in \(\psi \) having two common vertices \(v_1, v_2 \) of \(C \) such that \(\deg v_1, \deg v_2 > 2 \).

Let \(S_1 \) and \(S_2 \) denote the set of all paths in \(\psi \) passing through \(v_1 \) and \(v_2 \) respectively. Then the induced subgraph \(\langle S_1 \cup S_2 \rangle \) forms a block in \(\Omega(\psi) \) and this block is the union of two complete graphs \(\langle S_1 \rangle \) and \(\langle S_2 \rangle \) having exactly two common vertices namely \(P_1 \) and \(P_2 \). All the remaining blocks of \(\Omega(\psi) \) are complete.

Case iv \(m \geq 2 \) and any two paths in \(\psi \) have at most one common vertex of degree greater than 2.

Let \(C = (v_1, v_2, \ldots, v_n, v_1) \) and \(v_{i_1}, v_{i_2}, \ldots, v_{i_m} \) be the vertices of degree greater than 2 on \(C \) with \(1 \leq i_1 < i_2 < \cdots < i_m \leq n \). Let \(G_j \) denote the complete subgraph of \(\Omega(\psi) \) induced by the set of all paths in \(\psi \) passing
through the vertex \(v_j \). Clearly \(G_j \) and \(G_{j+1} \) have exactly one common
vertex for each \(j = 1, 2, \ldots, m - 1 \) and \(G_m \) and \(G_1 \) have exactly one
common vertex so that \(B = G_1 \cup G_2 \cup \cdots \cup G_m \) forms a block in \(\Omega(\psi) \).
All the remaining blocks in \(\Omega(\psi) \) are complete.

We prove the converse by induction on the number of blocks of \(G \).
Suppose \(G \) has exactly one block. If \(G = K_n \) then by Remark 4.5, for any
minimum acyclic graphoidal cover \(\psi \) of the unicyclic graph \(H = K_{1,n+1} + e \),
we have \(G \cong \Omega(\psi) \). Suppose \(G = B \) where \(B \) is a block which is not
complete and \(B \) is an edge disjoint union of complete graphs \(G_1, G_2, \ldots, G_m \) such that \(G_i \) and \(G_{i+1} \) have exactly one common vertex for each
\(i = 1, 2, \ldots, m - 1 \) and \(G_m \) and \(G_1 \) have exactly one common vertex.
Let \(G_i = K_n, i = 1, 2, \ldots, m \). Let \(H \) be the unicyclic graph with cycle
\(C = (u_1, u_2, \ldots, u_m, u_1) \) and \(n_i - 1 \) pendant vertices \(u_{i1}, u_{i2}, \ldots, u_{i(n_i-1)} \)
adjacent to \(u_i \) for each \(i = 1, 2, \ldots, m \). For each \(i = 1, 2, \ldots, m \), let
\[
P_i = \begin{cases}
(u_{i1}, u_i, u_{i+1}) & \text{if } n_i = 2 \\
(u_{i1}, u_i, u_{i2}) & \text{if } n_i \geq 3.
\end{cases}
\]
Let \(S \) denote the set of all edges of \(H \), not covered by the paths \(P_1, P_2, \ldots, P_m \). Then \(\psi = \{P_1, P_2, \ldots, P_m\} \cup S \) is an acyclic graphoidal cover of
\(H \) and \(\Omega(\psi) \cong B \).

Suppose \(G = B \) where \(B \) is a block which is not complete and \(B \) is the
union of two complete graphs \(G_1 = K_{n_1} \) and \(G_2 = K_{n_2} \) such that \(G_1 \) and
\(G_2 \) have exactly two common vertices. Let \(H \) be the unicyclic graph with
cycle $C = (v_1, v_2, v_3, v_1)$, $n_1 - 1$ pendant vertices $u_1, u_2, \ldots, u_{n_1 - 1}$ adjacent to v_1 and $n_2 - 1$ pendant vertices $w_1, w_2, \ldots, w_{n_2 - 1}$ adjacent to v_2. Let $P_1 = (u_1, v_1, v_2, w_1)$ and $P_2 = (v_2, v_3, v_1)$. Let S denote the set of all edges of H not covered by P_1 and P_2. Then $\psi = \{P_1, P_2\} \cup S$ is an acyclic graphoidal cover of H and $\Omega(\psi) \cong B$.

We now assume that the result is true for all graphs with k blocks satisfying the conditions stated in the theorem where $k \geq 1$. Let G be a graph with $k + 1$ blocks satisfying the conditions stated in the theorem. Let $B = K_m$ be a block of G which has exactly one cut vertex v of G. Removal of all vertices of B other than v gives a graph G with k blocks. Hence there exists a unicyclic graph H_1 with unique cycle C and an acyclic graphoidal cover ψ_1 of H_1 such that $G_1 \cong \Omega(\psi_1)$. Let P_1 be a path in ψ_1 corresponding to v and let $P_1 = (v_1, v_2, \ldots, v_n)$. Subdivide the edge $v_{n-1}v_n$ by introducing a new vertex w. Let $P = (v_1, v_2, \ldots, v_{n-1}, w, v_n)$. Let H be the unicyclic graph obtained by adjoining the edges $wu_1, wu_2, \ldots, wu_{m-1}$ to H_1. Let $P'_i = (w, u_i)$, $i = 1, 2, \ldots, m - 1$.

Now $\psi = (\psi_1 \setminus \{P_1\}) \cup \{P\} \cup \{P'_i \mid i = 1, 2, \ldots, m - 1\}$ is an acyclic graphoidal cover of H and $G \cong \Omega(\psi)$. This completes the induction and the proof.

Remark 4.7 The proof of Theorem 4.6 is constructive. Hence given a graph G satisfying the conditions stated in Theorem 4.6, the proof of the theorem suggests in a straight forward way an algorithm for constructing
Figure 4.1

a unicyclic graph H and an acyclic graphoidal cover ψ of H such that $G \cong \Omega(\psi)$. We illustrate this algorithm with an example.

Example 4.8 Consider the graph G given in Figure 4.1. The block B_1 is not complete whereas the other blocks are complete. Also B_1 is an edge disjoint union of three complete graphs $G_1 = K_3$, $G_2 = K_2$ and $G_3 = K_4$ such that G_i and G_{i+1} have exactly one common vertex for each $i = 1, 2$ and G_3 and G_1 have exactly one common vertex. The construction of unicyclic graph H and an acyclic graphoidal cover ψ of H such that $G \cong \Omega(\psi)$ is shown in Figure 4.2.

Theorem 4.9 For a connected graph G, there exists a unicyclic graph H with unique cycle C and a graphoidal cover ψ of H with C as a member of ψ such that $G \cong \Omega(\psi)$ if and only if G is a block graph.

Proof If one vertex v on C is internal in some member $P \neq C$ of ψ, let $e = uv$ be an edge of C incident with v. Otherwise choose e^* to be
any edge of C. Now $H - e$ is a tree and $\psi_1 = (\psi - \{C\}) \cup (C - e)$ is a graphoidal cover of $H - e$ and hence $\Omega(\psi_1)$ is a block graph. Also $\Omega(\psi) = \Omega(\psi_1)$ and hence $\Omega(\psi)$ is a block graph. Converse can be easily proved by using induction on the number of blocks of G.

Definition 4.10 A graph G is called a path partition graph if there exists a graph H and a path partition ψ of H such that $G \cong \Omega(\psi)$.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure42.png}
\caption{Figure 4.2}
\end{figure}
Remark 4.11 Since $E(G)$ is trivially a path partition of G, any line graph is a path partition graph.

We now proceed to investigate the structure of the path partition graph of a tree.

Theorem 4.12 Let T be a tree with k odd vertices and let ψ be a minimum path partition of T. Then

(i) Number of vertices in $\Omega(\psi) = \frac{k}{2}$

(ii) Number of edges in $\Omega(\psi) = \sum \left(\left\lfloor \frac{\deg v}{2} \right\rfloor \right)$

where summation is taken over all vertices of degree greater than 2.

Proof (i) follows from Theorem 1.24. Now let $\deg v > 2$. Since ψ is a minimum path partition of T, there are exactly $\left\lfloor \frac{\deg v}{2} \right\rfloor$ paths containing v and any two of these paths determine a line in $\Omega(\psi)$. Hence (ii) follows.

Theorem 4.13 Let G be a graph. Then there exists a tree T and a path partition ψ of T such that $G \cong \Omega(\psi)$ if and only if G is a block graph.

Proof Similar to the proof of Theorem 1.39.
Theorem 4.14 Let G be a connected graph. Then there exists a unicyclic graph H and a path partition ψ of H such that $G \cong \Omega(\psi)$ if and only if one of the following holds.

(i) G is a block graph.

(ii) There exists exactly one block B of G which is not complete and B is an edge disjoint union of complete graphs G_1, G_2, \ldots, G_m such that G_i and G_{i+1} have exactly one common vertex for each $i = 1, 2, \ldots, m-1$ and G_m and G_1 have exactly one common vertex.

(iii) There exists exactly one block B of G which is not complete and B is the union of two complete graphs G_1 and G_2 such that G_1 and G_2 have exactly two common vertices.

Proof Similar to that of Theorem 4.6.

Theorem 4.15 Let G be a connected graph with n vertices. Then there exists a complete bipartite graph $K_{2,n+1}$ and a minimum acyclic graphoidal cover ψ of $K_{2,n+1}$ such that $G \cong \Omega(\psi)$ if and only if G is complete.

Proof Suppose there is a complete bipartite graph $K_{2,n+1}$ with bipartition (X, Y) where $X = \{x_1, x_2\}$, $Y = \{y_1, y_2, \ldots, y_{n+1}\}$ and a minimum acyclic graphoidal cover ψ of $K_{2,n+1}$ such that $G \cong \Omega(\psi)$. Since $\eta_n(K_{2,n+1}) = n$ and every path in ψ contains both x_1 and x_2, $\Omega(\psi)$ is complete.

Converse is trivial.
We now proceed to characterize complete multipartite graphs which are graphoidal.

Lemma 4.16 Let X be an independent set of a graph G and let
\[
\bar{q} = \sum_{v \in X} \deg v.
\]
If $\bar{q} > 2p$ then G is not graphoidal.

Proof Let $X = \{x_1, x_2, \ldots, x_n\}$ and $Y = V \setminus X = \{y_1, y_2, \ldots, y_m\}$. Let n_j denote the number of vertices in X to which y_j is adjacent. Let
\[
k_0 = |\{j \mid 1 \leq j \leq m \text{ and } n_j = 0\}|,
\]
\[
k_1 = |\{j \mid 1 \leq j \leq m \text{ and } n_j = 1\}| \text{ and }
\]
\[
k_2 = |\{j \mid 1 \leq j \leq m \text{ and } n_j \geq 2\}|
\]
so that $k_0 + k_1 + k_2 = m$. Suppose G is graphoidal. Then there exists a graph H and a graphoidal cover ψ of H such that $G \cong \Omega(\psi)$. Let P_1, P_2, \ldots, P_n be the paths corresponding to x_1, x_2, \ldots, x_n and Q_1, Q_2, \ldots, Q_m be the paths corresponding to y_1, y_2, \ldots, y_m. Since each Q_j intersects n_j of the mutually vertex disjoint paths P_1, P_2, \ldots, P_n, Q_j has $n_j - 2$ internal vertices which are external vertices of P_1, P_2, \ldots, P_n so that $\sum_{n_j \geq 2} (n_j - 2) \leq 2n$. Hence $\sum_{n_j \geq 2} n_j \leq 2n + 2k_2$. Now
\[
\bar{q} = \sum_{n_j} n_j = \sum_{n_j = 1} n_j + \sum_{n_j \geq 2} n_j \leq k_1 + 2n + 2k_2 \leq 2n + 2m = 2p.
\]
Thus $\bar{q} \leq 2p$ which is a contradiction. \[\]
Theorem 4.17 Let \(m_1 \geq 3, n \geq 3 \) and \(m_1 \geq m_2 \geq \cdots \geq m_n \). Then the complete multipartite graph \(G = K_{m_1,m_2,\ldots,m_n} \) is graphoidal if and only if
\[
m_1(m_2 + m_3 + \cdots + m_n) \leq 2(m_1 + m_2 + \cdots + m_n).
\]

Proof Suppose \(K_{m_1,m_2,\ldots,m_n} \) is graphoidal. Let \((X_1, X_2, \ldots, X_n) \) be an \(n \)-partition of \(G \). Since \(X_1 \) is an independent set of \(G \), by Lemma 4.16
\[
\sum_{v \in X_1} \deg v \leq 2p \quad \text{and hence} \quad m_1(m_2 + m_3 + \cdots + m_n) \leq 2(m_1 + m_2 + \cdots + m_n).
\]

Conversely suppose \(m_1(m_2 + m_3 + \cdots + m_n) \leq 2(m_1 + m_2 + \cdots + m_n) \). Then \((m_1 - 2)k \leq 2m_1\) where \(k = m_2 + m_3 + \cdots + m_n \).

Case i \(m_1 \geq 7 \).

Then \(k \leq 2 \) so that \(m_2 = m_3 = 1 \) and \(n = 3 \). Now
\[
P_{1j} = (x_{2j-1}, y_j, x_{2j}) \quad j = 1, 2, \ldots, m_1
\]
\[
P_{21} = (x_{2m_1-3}, x_1, x_3, x_5, \ldots, x_{2m_1-5}, x_{2m_1-1})
\]
\[
P_{31} = (x_{2m_1-3}, x_2, x_4, x_6, \ldots, x_{2m_1-4}, x_{2m_1})
\]
gives a collection \(\psi \) of internally disjoint and edge disjoint paths such that
\[
\Omega(\psi) \cong K_{m_1,1,1}.
\]

Case ii \(m_1 = 5 \) or \(6 \).

Then \(k \leq 3 \) so that \(n \leq 4 \). Since any induced subgraph of a graphoidal graph is graphoidal we can assume that \(k = 3 \) and \(m_1 = 6 \) so that
(a) \(m_2 = m_3 = m_4 = 1 \) and \(n = 4 \) or
(b) \(m_2 = 2, m_3 = 1 \) and \(n = 3 \).

If (a) holds, then the required collection of paths is given by
\[
P_{1j} = (x_{2j-1}, y_j, x_{2j}) \quad j = 1, 2, \ldots, 6, \quad P_{21} = (y_5, x_2, x_4, x_6, x_8, x_{12}),
\]
\(P_{31} = (x_6, x_{10}, x_{12}, x_1, x_3, x_7) \) and \(P_{41} = (x_1, x_5, x_7, x_9, x_{11}, x_4) \).

If (b) holds, then the required collection of paths is given by

\[
P_{11} = (x_{2j-1}, y_j, x_{2j}) \quad j = 1, 2, \ldots, 6, \quad P_{21} = (y_5, x_2, x_4, x_6, x_8, x_{12}),
\]
\[
P_{22} = (y_3, x_{10}, x_{12}, x_1, x_3, x_7) \quad \text{and} \quad P_{31} = (x_2, x_5, x_7, x_9, x_{11}, x_3).
\]

Case iii \(m_1 = 4 \).

Then \(k \leq 4 \). The possible values of \(m_i \) \((i \geq 2) \) and \(n \) are

(a) \(m_2 = m_3 = m_4 = m_5 = 1 \) and \(n = 5 \)

(b) \(m_2 = 2, m_3 = 2 \) and \(n = 3 \)

(c) \(m_2 = 2, m_3 = 1, m_4 = 1 \) and \(n = 4 \)

(d) \(m_2 = 3, m_3 = 1 \) and \(n = 3 \).

If (a) holds, then the required collection of paths is given by

\[
P_{ij} = (x_{2j-1}, y_j, x_{2j}) \quad j = 1, 2, 3, 4, \quad P_{21} = (y_3, x_2, x_4, x_8),
\]
\[
P_{31} = (x_2, x_6, x_8, x_3), \quad P_{41} = (y_3, x_1, x_3, x_7) \quad \text{and} \quad P_{51} = (x_2, x_5, x_7, x_4).
\]

If (b) holds, then the required collection of paths is given by

\[
P_{ij} = (x_{2j-1}, y_j, x_{2j}) \quad j = 1, 2, 3, 4, \quad P_{21} = (y_3, x_2, x_4, x_7),
\]
\[
P_{22} = (y_1, x_6, x_8, x_3), \quad P_{31} = (y_3, x_1, x_3, y_4) \quad \text{and} \quad P_{32} = (y_1, x_5, x_7, y_2).
\]

If (c) holds, then the required collection of paths is given by

\[
P_{ij} = (x_{2j-1}, y_j, x_{2j}) \quad j = 1, 2, 3, 4, \quad P_{21} = (y_3, x_2, x_4, x_7),
\]
\[
P_{22} = (y_1, x_6, x_8, x_3), \quad P_{31} = (y_3, x_1, x_3, y_4) \quad \text{and} \quad P_{41} = (x_3, x_5, x_7, x_2).
\]

If (d) holds, then the required collection of paths is given by

\[
P_{ij} = (x_{2j-1}, y_j, x_{2j}) \quad j = 1, 2, 3, 4, \quad P_{21} = (y_3, x_2, x_4, x_7),
\]
\[
P_{22} = (y_1, x_6, x_8, y_2), \quad P_{23} = (y_4, x_1, x_3, x_5) \quad \text{and} \quad P_{31} = (x_1, x_5, x_7, y_2).
\]
Case iv \(m_1 = 3 \).

Then \(k \leq 6 \). The possible values of \(m_i \) (\(i \geq 2 \)) and \(n \) are

(a) \(m_2 = m_3 = m_4 = m_5 = m_6 = m_7 = 1 \) and \(n = 7 \)

(b) \(m_2 = m_3 = m_4 = 2 \) and \(n = 4 \)

(c) \(m_2 = m_3 = 2, m_4 = m_5 = 1 \) and \(n = 5 \)

(d) \(m_2 = 2, m_3 = m_4 = m_5 = m_6 = 1 \) and \(n = 6 \)

(e) \(m_2 = 3, m_3 = m_4 = m_5 = 1 \) and \(n = 5 \)

(f) \(m_2 = 3, m_3 = 2, m_4 = 1 \) and \(n = 4 \)

(g) \(m_2 = m_3 = 3 \) and \(n = 3 \).

If (a) holds, then the required collection of paths is given by

\[
P_{1j} = (x_{2j-1}, y_j, x_{2j}) \quad j = 1, 2, 3, \quad P_{21} = (y_2, x_2, x_6), \\
P_{31} = (x_6, x_4, y_1), \quad P_{41} = (y_2, x_6, x_1), \quad P_{51} = (x_6, x_1, y_2), \\
P_{61} = (x_6, x_3, y_1) \text{ and } P_{71} = (y_2, x_5, y_1).
\]

If (b) holds, then the required collection of paths is given by

\[
P_{1j} = (x_{2j-1}, y_j, x_{2j}) \quad j = 1, 2, 3, \quad P_{21} = (y_2, x_2, x_6), \\
P_{22} = (x_5, x_4, x_1), \quad P_{31} = (y_1, x_6, x_4), \quad P_{32} = (y_2, x_1, x_5), \\
P_{41} = (x_6, x_3, x_1) \text{ and } P_{42} = (y_2, x_5, y_1).
\]

If (c) holds, then the required collection of paths is given by

\[
P_{1j} = (x_{2j-1}, y_j, x_{2j}) \quad j = 1, 2, 3, \quad P_{21} = (x_4, x_6, x_2), \\
P_{22} = (y_3, x_1, x_3), \quad P_{31} = (y_3, x_3, x_2), \quad P_{32} = (x_4, x_5, x_1), \\
P_{41} = (x_4, x_2, y_3) \text{ and } P_{51} = (y_3, x_4, y_1).
\]

If (d) holds then the required collection of paths is given by

\[
P_{1j} = (x_{2j-1}, y_j, x_{2j}) \quad j = 1, 2, 3, \quad P_{21} = (x_6, x_3, x_1),
\]
$P_{22} = (x_4, x_5, y_1), P_{31} = (x_4, x_2, x_6), P_{41} = (y_1, x_4, x_6), P_{51} = (y_1, x_6, y_2)$ and $P_{61} = (x_6, x_1, x_4)$.

If (e) holds then the required collection of paths is given by

$P_{1j} = (x_{2j-1}, y_j, x_{2j})$ \(j = 1, 2, 3\), $P_{21} = (y_2, x_2, x_5)$,

$P_{22} = (y_3, x_4, x_1), P_{23} = (y_1, x_6, x_3), P_{31} = (x_3, x_1, x_5)$,

$P_{41} = (x_2, x_3, y_3)$ and $P_{51} = (x_1, x_7, x_5, x_3)$.

If (f) holds then the required collection of paths is given by

$P_{1j} = (x_{2j-1}, y_j, x_{2j})$ \(j = 1, 2, 3\), $P_{21} = (y_2, x_2, x_5)$,

$P_{22} = (y_3, x_4, x_1), P_{23} = (y_1, x_6, x_3), P_{31} = (y_2, x_1, x_6)$,

$P_{32} = (x_2, x_3, y_3)$ and $P_{41} = (x_1, x_5, x_3)$.

If (g) holds, then the required collection of paths is given by

$P_{1j} = (x_{2j-1}, y_j, x_{2j})$ \(j = 1, 2, 3\), $P_{21} = (y_2, x_2, x_5)$,

$P_{22} = (y_3, x_4, x_1), P_{23} = (y_1, x_6, x_3), P_{31} = (y_2, x_1, x_6)$,

$P_{32} = (y_3, x_3, x_2)$ and $P_{33} = (y_1, x_5, x_4)$.

\[\]