LIST OF TABLES

Table 4.1 Co-ordinate values of airfoil S 816.................................................................42
Table 4.1 (a) Co-ordinate values of airfoil S 817 .............................................................43
Table 4.1 (b) Co-ordinate values of airfoil S 818 .............................................................44
Table 4.2 Blade details at various sections .................................................................45
Table 4.3 Pressure moment, viscous moment................................................................58
Table 4.4 Pressure moment and viscous moment .........................................................65
Table 4.5 Comparison of Power generation.................................................................82
Table 4.6 Moments generated by the three Blades .......................................................83
Table 5.1 Various surface parts of the three Blades .......................................................93
Table 5.2 Area of seperated surface zones ...................................................................94
Table 5.3 Comparison of pressure moment.................................................................96
Table 5.4 Comparison of viscous moment.................................................................99
Table 5.5 Comparisons of total moment generated by different rough surfaces ..103
Table 6.1 Various moments generated by three blades with gurney flaps ..............117
Table 6.2 Various moments generated by three blades without gurney flaps .........117
Table 6.3 Moments generated by three blades without winglets on Y axis ...........124
Table 6.4 Moments generated by three blades with winglets on Y axis ...............125
Table 7.1 Design of experiments —Combination .....................................................136
Table 7.2 Boundary Layer Separation values at various points..............................138
Table 7.3 Configuration of Vortex generator at various section of the Blade .........140
Table 7.4 Moments generated by three blades with VG ........................................153
Table 7.5 Moment generated by the three blades without VG ............................153
Table 7.6 Comparison of the moments generated ..................................................157
Table 7.7 Moments generated by the three blades ..................................................158
**LIST OF FIGURES**

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Top ten cumulative wind power capacities as in December 2010...</td>
<td>2</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>Top ten cumulative wind power capacities installed during January to December 2010...</td>
<td>3</td>
</tr>
<tr>
<td>Figure 1.3</td>
<td>Global Cumulative Wind Power...</td>
<td>4</td>
</tr>
<tr>
<td>Figure 1.4</td>
<td>Indian Cumulative Wind Power...</td>
<td>5</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Principle of wind energy...</td>
<td>11</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Relative velocity concepts...</td>
<td>20</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>BEM annular control volumes...</td>
<td>22</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Wind power distributions...</td>
<td>28</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Lagrangian Description...</td>
<td>32</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Eulerian Description...</td>
<td>32</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Segregated Solution Procedures...</td>
<td>35</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Methodology for CFD analysis of HAWT...</td>
<td>40</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Profile of S816, S817 &amp; S818 airfoil...</td>
<td>41</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Modeling the airfoils of the blade...</td>
<td>46</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>Lofting of the airfoil sections...</td>
<td>46</td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>Blades modeling with suction and pressure sides...</td>
<td>47</td>
</tr>
<tr>
<td>Figure 4.6</td>
<td>Assembly of blade and hub...</td>
<td>48</td>
</tr>
<tr>
<td>Figure 4.7</td>
<td>Assembly constraints cone angle, tilt angle...</td>
<td>48</td>
</tr>
<tr>
<td>Figure 4.8</td>
<td>Complete model of windmill...</td>
<td>49</td>
</tr>
<tr>
<td>Figure 4.9</td>
<td>Discretization of parts of the HAWT...</td>
<td>50</td>
</tr>
<tr>
<td>Figure 4.10</td>
<td>Cylindrical domains...</td>
<td>51</td>
</tr>
<tr>
<td>Figure 4.11</td>
<td>Cubical domains...</td>
<td>51</td>
</tr>
<tr>
<td>Figure 4.12</td>
<td>Location of wind turbine in the computational domain...</td>
<td>52</td>
</tr>
<tr>
<td>Figure 4.13</td>
<td>Volume zones for analysis...</td>
<td>53</td>
</tr>
<tr>
<td>Figure 4.14</td>
<td>MRF zone in the assembly of HAWT...</td>
<td>54</td>
</tr>
<tr>
<td>Figure 4.15</td>
<td>Iteration statuses with convergence...</td>
<td>55</td>
</tr>
<tr>
<td>Figure 4.16</td>
<td>Cross sectional view of the domain of analysis...</td>
<td>56</td>
</tr>
</tbody>
</table>
Figure 4.39  Pressure and viscous moments generated by each blade................................. 83
Figure 5.1  Blade A’s pressure side middle part surface.................................................... 91
Figure 5.2  Blade A’s pressure side root part surface ..................................................... 91
Figure 5.3  Blade A’s pressure side part surface .............................................................. 92
Figure 5.4  Blade A’s pressure side tip part surface ......................................................... 92
Figure 5.5  Blade B in the HAWT assembly ................................................................. 92
Figure 5.6  Blade C in the HAWT assembly ................................................................. 93
Figure 5.7  Moments generated by various surfaces of blades in Y axis ....................... 95
Figure 5.8  Pressure moments generated by Blade-A-psm, Blade-A-ssm and Blade-B-psm, Blade-B-ssm for different surface roughness heights................................. 97
Figure 5.9  Pressure moments generated by Blade-A-ps, Blade-A-ss and Blade-B-ps, Blade-B-ss for different surface roughness heights................................................. 97
Figure 5.10 Pressure moments generated by Blade-A-psr, Blade-A-ssr and Blade-B-psr, Blade-B-ssr for different surface roughness heights ........................................ 97
Figure 5.11 Pressure moments generated by Blade-C-psm, Blade-C-ssm and Blade-C-ps, Blade-C-ss for different surface roughness heights ........................................ 98
Figure 5.12 Pressure moments generated by Blade-C-psr, and Blade-C-ssr for different surface roughness heights................................................................. 98
Figure 5.13 Viscous moments generated by Blade-A-psm, Blade-A-ssm and Blade-B-psm, Blade-B-ssm for different surface roughness heights............................... 100
Figure 5.14 Viscous moments generated by Blade-A-ps, Blade-A-ss and Blade-B-ps, Blade-B-ss for different surface roughness heights................................................. 101
Figure 5.15 Viscous moments generated by Blade-A-psr, Blade-A-ssr and Blade-B-psr, Blade-B-ssr for different surface roughness heights .............................................. 102
Figure 5.16 Viscous moments generated by Blade-C-ss, Blade-C-ps and Blade-C-ssm, Blade-C-psm for different surface roughness heights............................................. 102
Figure 5.17 Viscous moments generated by Blade-C-ps, and Blade-C-ssr for different surface roughness height .................................................................................. 102
Figure 5.18  Comparison of total moments generated by various surfaces of blades in Y axis .......................................................... 104

Figure 6.1  Flap at the trailing edge ................................................................. 116

Figure 6.2  Contours of static pressure ............................................................ 118

Figure 6.3  Contours dynamic pressures ......................................................... 118

Figure 6.4  Contours of velocity magnitude over the three blades with gurney flaps ................................................................. 119

Figure 6.5  Velocity vectors colored by velocity magnitude (without tower) ................................................................................ 119

Figure 6.6  Contours of velocity magnitude .................................................... 120

Figure 6.7  Velocity vectors colored by dynamic pressure ................................ 120

Figure 6.8  Velocity vectors colored by velocity magnitude (with tower) ................................................................. 121

Figure 6.9  Blade with winglet at the tip ......................................................... 121

Figure 6.10  Blades with winglet at the tips on HAWT ..................................... 122

Figure 6.11  Static pressure contour over entire assembly of HAWT with winglets ........................................................................ 122

Figure 6.12  Velocity magnitude contour over entire assembly ....................... 123

Figure 6.13  Moments generated on Y axis by three blades without winglets ................................................................. 124

Figure 6.14  Moments generated on Y axis by three blades with winglet ................................................................. 125

Figure 7.1  Comparison of airfoil with & without vortex generators. .............. 128

Figure 7.2  Flow Separation graph on airfoil ................................................. 137

Figure 7.3  Configuration of Vortex generator ............................................... 139

Figure 7.4  Methodology for developing the model ......................................... 141

Figure 7.5  Airfoil curve extracted in LABFIT .............................................. 142

Figure 7.6  Curve equations in LABFIT ....................................................... 142

Figure 7.7  Construction of Vortex generator ............................................... 144

Figure 7.8  Array of VG on single blade ......................................................... 145

Figure 7.9  Array of VG on the Single blade at various sections ..................... 145

Figure 7.10  Meshing of the Blade ................................................................. 146

Figure 7.11  Iterations residuals .................................................................... 146

Figure 7.12  Velocity contour plots on the blades .......................................... 147

Figure 7.13  Pressure contour plots ............................................................... 148
Figure 7.14  Velocity vector plot over the blades viewed from inlet .................................................. 148
Figure 7.15  Velocity vector plot by sweep surface along X direction ................................................. 149
Figure 7.16  Velocity vector plot by sweep surface along Y direction ................................................. 150
Figure 7.17  Total Pressure plot by sweep surface along Y direction ................................................ 151
Figure 7.18  Turbulence plot by sweep surface along X direction ..................................................... 152
Figure 7.19  Pressure contour on the blade surfaces ....................................................................... 154
Figure 7.20  Velocity contour with sweep surface in X axis ............................................................... 155
Figure 7.21  Pressure contour with sweep surface in X axis ............................................................. 155
Figure 7.22  Velocity vector plot over the blades viewed from outlet ................................................. 156
Figure 7.23  Turbulence plot of wake region .................................................................................. 156
Figure 7.24  Moments generated by the three blades without VGs ................................................... 157
Figure 7.25  Pressure moment and viscous moment generated by the three blades
  with VGs ....................................................................................................................................... 158
Figure 7.26  The comparison of pressure and viscous moments generated ........................................... 159