List of Tables

Table 1	Nutritional quality of different legumes used in the present study
Table 2	Current information on available rhizobial species
Table 3	Growth promoting substances produced by plant growth promoting rhizobacteria
Table 4	Examples of plant growth-promoting substances synthesized by symbiotic nitrogen fixers
Table 5	Organic acid production and P solubilization by PS bacteria
Table 6	Some examples of siderophores produced by various bacteria and fungi
Table 7	Plant responses to inoculation with PGPR
Table 8	Examples of sole and composite inoculation effects of phosphate solubilizing bacteria on biological and chemical characteristics of different plants
Table 9	Culture medium and growth conditions used for isolation and enumeration of microbial populations
Table 10	List of antibiotics used for sensitivity test
Table 11	Rates of urea and DAP for legumes
Table 12	Experimental design for pot and field trials
Table 13	Schemes followed for removal of plant organs at various stages
Table 14	Microbial diversity in different soil samples collected from experimental fields of Faculty of Agricultural Sciences
Table 15	Population of P-solubilizing and asymbiotic N-fixers in different soil samples collected from experimental fields of Faculty of Agricultural Sciences
Table 16	Morphological and biochemical characteristics of N-fixers
Table 17	Morphological and biochemical characteristics of P-solubilizers
Table 18	Plant growth promoting (PGP) and antifungal activity based typing of *Mesorhizobium* strains (N=15) isolated from chickpea nodules
Table 19	Plant growth promoting (PGP) and antifungal activity based typing of *Rhizobium* strains (N=15) isolated from pea nodules
Table 20	Plant growth promoting (PGP) and antifungal activity based typing of *Bradyrhizobium* strains (N=10) isolated from greengram nodules
Table 21	Plant growth promoting (PGP) and antifungal activity based typing of *Rhizobium* strains (N=10) isolated from lentil nodules
Table 22	Plant growth promoting (PGP) and antifungal activity based typing of *Azotobacter* strains (N=20) isolated from rhizospheric soil
Table 23	Plant growth promoting (PGP) and antifungal activity based typing of phosphate solubilizers (N=30) isolated from rhizospheric soils
Table 24	Quantitative assay of plant growth promoting (PGP) activity of *Mesorhizobium* strains (N=15) isolated from chickpea nodules
Table 25	Quantitative assay of plant growth promoting (PGP) activity of *Rhizobium* strains (N=15) isolated from pea nodules
Table 26	Quantitative assay of plant growth promoting (PGP) activity of *Bradyrhizobium* strains (N=10) isolated from greengram nodules
Table 27	Quantitative assay of plant growth promoting (PGP) activity of *Rhizobium* strains (N=10) isolated from lentil nodules
Table 28	Quantitative assay of plant growth promoting (PGP) activity of *Azotobacter* strains (N=20) isolated from various rhizospheric soil
Table 29 Quantitative assay of plant growth promoting (PGP) activity of P-solubilizers (N=8) isolated from mentha rhizospheric soil	
Table 30 Quantitative assay of plant growth promoting (PGP) activity of P-solubilizers (N=10) isolated from chilli rhizospheric soil	
Table 31 Quantitative assay of plant growth promoting (PGP) activity of P-solubilizers (N=7) isolated from cabbage rhizospheric soil	
Table 32 Quantitative assay of plant growth promoting (PGP) activity of P-solubilizers (N=5) isolated from mustard rhizospheric soil	
Table 33 Antifungal activity of rhizobia and Azotobacter	
Table 34 Antifungal activity of isolated P-solubilizers	
Table 35 Antibiotic resistance/ sensitivity profile of most promising PGPR strain	
Table 36 Molecular identification of bacterial strains by 16S rRNA gene sequencing	
Table 37 Most promising bacterial strains showing greatest plant growth promoting activity	
Table 38 Single and coinoculation effects of ACC deaminase producing P. putida strain PSE3 and M. ciceri strain RG5 on growth of chickpea plant	
Table 39 Single and coinoculation effects of ACC deaminase producing P. putida strain PSE3 and M. ciceri strain RG5 on dry biomass of plant organs for chickpea plant	
Table 40 Single and coinoculation effects of ACC deaminase producing P. putida strain PSE3 and M. ciceri strain RG5 on photosynthetic and symbiotic attributes of chickpea plant	
Table 41 Single and coinoculation effects of ACC deaminase producing P. putida strain PSE3 and M. ciceri strain RG5 on nutrient uptake, seed yield and seed quality of chickpea plant	
Table 42 Single and coinoculation effects of ACC deaminase producing B. pumilus strain ES3 and M. ciceri strain RG5 on growth of chickpea plant	
Table 43 Single and coinoculation effects of ACC deaminase producing B. pumilus strain ES3 and M. ciceri strain RG5 on dry biomass of plant organs for chickpea plant	
Table 44 Single and coinoculation effects of ACC deaminase producing B. pumilus strain ES3 and M. ciceri strain RG5 on photosynthetic and symbiotic attributes of chickpea plant	
Table 45 Single and coinoculation effects of ACC deaminase producing B. pumilus strain ES3 and M. ciceri strain RG5 on nutrient uptake, seed yield and seed quality of chickpea plant	
Table 46 Single and coinoculation effects of phosphate solubilizing Azotobacter strain AZ19 and ACC deaminase producing M. ciceri strain RG5 on growth of chickpea plant	
Table 47 Single and coinoculation effects of phosphate solubilizing Azotobacter strain AZ19 and ACC deaminase producing M. ciceri strain RG5 on dry biomass of plant organs for chickpea plant	
Table 48 Single and coinoculation effects of phosphate solubilizing Azotobacter strain AZ19 and ACC deaminase producing M. ciceri strain RG5 on photosynthetic and symbiotic attributes of chickpea plant	
Table 49	Single and coinoculation effects of phosphate solubilizing *Azotobacter* strain AZ19 and ACC deaminase producing *M. ciceri* strain RG5 on nutrient uptake, seed yield and seed quality of chickpea plant
Table 50	Single and coinoculation effects of ACC deaminase producing *P. putida* strain PSE3 and *R. leguminosarum* strain RP2 on growth of pea plant
Table 51	Single and coinoculation effects of ACC deaminase producing *P. putida* strain PSE3 and *R. leguminosarum* strain RP2 on dry biomass of plant organs for pea plant
Table 52	Single and coinoculation effects of ACC deaminase producing *P. putida* strain PSE3 and *R. leguminosarum* strain RP2 on photosynthetic and symbiotic attributes of pea plant
Table 53	Single and coinoculation effects of ACC deaminase producing *P. putida* strain PSE3 and *R. leguminosarum* strain RP2 on nutrient uptake, seed yield and seed quality of pea plant
Table 54	Single and coinoculation effects of ACC deaminase producing *B. pumilus* strain ES3 and *R. leguminosarum* strain RP2 on growth of pea plant
Table 55	Single and coinoculation effects of ACC deaminase producing *B. pumilus* strain ES3 and *R. leguminosarum* strain RP2 on dry biomass of plant organs for pea plant
Table 56	Single and coinoculation effects of ACC deaminase producing *B. pumilus* strain ES3 and *R. leguminosarum* strain RP2 on photosynthetic and symbiotic attributes of pea plant
Table 57	Single and coinoculation effects of ACC deaminase producing *B. pumilus* strain ES3 and *R. leguminosarum* strain RP2 on nutrient uptake, seed yield and seed quality of pea plant
Table 58	Single and coinoculation effects of phosphate solubilizing *Azotobacter* strain AZ19 and ACC deaminase producing *R. leguminosarum* strain RP2 on growth of pea plant
Table 59	Single and coinoculation effects of phosphate solubilizing *Azotobacter* strain AZ19 and ACC deaminase producing *R. leguminosarum* strain RP2 on dry biomass of plant organs for pea plant
Table 60	Single and coinoculation effects of phosphate solubilizing *Azotobacter* strain AZ19 and ACC deaminase producing *R. leguminosarum* strain RP2 on photosynthetic and symbiotic attributes of pea plant
Table 61	Single and coinoculation effects of phosphate solubilizing *Azotobacter* strain AZ19 and ACC deaminase producing *R. leguminosarum* strain RP2 on nutrient uptake, seed yield and seed quality of pea plant
Table 62	Single and coinoculation effects of ACC deaminase producing *P. putida* strain PSE3 and *Bradyrhizobium* strain RB6 on growth of greengram plant
Table 63	Single and coinoculation effects of ACC deaminase producing *P. putida* strain PSE3 and *Bradyrhizobium* strain RB6 on dry biomass of plant organs for greengram plant
Table 64	Single and coinoculation effects of ACC deaminase producing *P. putida* strain PSE3 and *Bradyrhizobium* strain RB6 on photosynthetic and symbiotic attributes of greengram plant
Table 65	Single and coinoculation effects of ACC deaminase producing *P. putida* strain PSE3 and *Bradyrhizobium* strain RB6 on nutrient uptake,
Table 66 Single and coinoculation effects of ACC deaminase producing *B. pumilus* strain ES3 and *Bradyrhizobium* strain RB6 on growth of greengram plant

Table 67 Single and coinoculation effects of ACC deaminase producing *B. pumilus* strain ES3 and *Bradyrhizobium* strain RB6 on dry biomass of plant organs for greengram plant

Table 68 Single and coinoculation effects of ACC deaminase producing *B. pumilus* strain ES3 and *Bradyrhizobium* strain RB6 on photosynthetic and symbiotic attributes of greengram plant

Table 69 Single and coinoculation effects of ACC deaminase producing *B. pumilus* strain ES3 and *Bradyrhizobium* strain RB6 on nutrient uptake, seed yield and seed quality of greengram plant

Table 70 Single and coinoculation effects of phosphate solubilizing *Azotobacter* strain AZ19 and ACC deaminase producing *Bradyrhizobium* strain RB6 on growth of greengram plant

Table 71 Single and coinoculation effects of phosphate solubilizing *Azotobacter* strain AZ19 and ACC deaminase producing *Bradyrhizobium* strain RB6 on dry biomass of plant organs for greengram plant

Table 72 Single and coinoculation effects of phosphate solubilizing *Azotobacter* strain AZ19 and ACC deaminase producing *Bradyrhizobium* strain RB6 on photosynthetic and symbiotic attributes of greengram plant

Table 73 Single and coinoculation effects of phosphate solubilizing *Azotobacter* strain AZ19 and ACC deaminase producing *Bradyrhizobium* strain RB6 on nutrient uptake, seed yield and seed quality of greengram plant

Table 74 Single and coinoculation effects of ACC deaminase producing *P. putida* strain PSE3 and *Rhizobium* strain RV9 on growth of lentil plant

Table 75 Single and coinoculation effects of ACC deaminase producing *P. putida* strain PSE3 and *Rhizobium* strain RV9 on dry biomass of plant organs for lentil plant

Table 76 Single and coinoculation effects of ACC deaminase producing *P. putida* strain PSE3 and *Rhizobium* strain RV9 on photosynthetic and symbiotic attributes lentil plant

Table 77 Single and coinoculation effects of ACC deaminase producing *P. putida* strain PSE3 and *Rhizobium* strain RV9 on nutrient uptake, seed yield and seed quality of lentil plant

Table 78 Single and coinoculation effects of ACC deaminase producing *B. pumilus* strain ES3 and *Rhizobium* strain RV9 on growth of lentil plant

Table 79 Single and coinoculation effects of ACC deaminase producing *B. pumilus* strain ES3 and *Rhizobium* strain RV9 on dry biomass of plant organs for lentil plant

Table 80 Single and coinoculation effects of ACC deaminase producing *B. pumilus* strain ES3 and *Rhizobium* strain RV9 on photosynthetic and symbiotic attributes of lentil plant

Table 81 Single and coinoculation effects of ACC deaminase producing *B. pumilus* strain ES3 and *Rhizobium* strain RV9 on nutrient uptake, seed yield and seed quality of lentil plant

Table 82 Single and coinoculation effects of phosphate solubilizing *Azotobacter* strain AZ19 and ACC deaminase producing *Rhizobium* strain RV9 on...
growth of lentil plant
Single and coinoculation effects of phosphate solubilizing Azotobacter strain AZ19 and ACC deaminase producing Rhizobium strain RV9 on dry biomass of plant organs for lentil plant

Table 83
Single and coinoculation effects of phosphate solubilizing Azotobacter strain AZ19 and ACC deaminase producing Rhizobium strain RV9 on photosynthetic and symbiotic attributes lentil of plant

Table 84
Single and coinoculation effects of phosphate solubilizing Azotobacter strain AZ19 and ACC deaminase producing Rhizobium strain RV9 on nutrient uptake, seed yield and seed quality of lentil plant

Table 85
Comparative assessment of inoculation response on to the biological characteristics of legume grown in alluvial soil

Table 86
Comparative assessment of inoculation response on to the chemical characteristics of legume grown in alluvial soil

Table 87
Comparative assessment of inoculation response on to the chemical characteristics of legume grown in alluvial soil

Table 88
Comparative assessment of inoculation response on to the biological characteristics of legume grown in alluvial soil

Table 89
Comparative assessment of inoculation response on to the biological characteristics of legume grown in alluvial soil

Table 90
Correlation coefficient values (R) of various biological characteristics of legumes grown in pot and field trials

List of Figures

Fig. 1 A general scheme showing how PGPR promote plant growth
Fig. 2 Biosynthetic pathways of IAA synthesis in bacteria
Fig. 3 Indole acetic acid affecting various stages of plant development
Fig. 4 A schematic model of how plant growth-promoting bacteria that both produce ACC deaminase and synthesize IAA may facilitate plant growth
Fig. 5 Mechanisms of P solubilization by phosphate solubilizing bacteria
Fig. 6 An Illustration depicting functional diversity among PS bacteria
Fig. 7 Different types of siderophores
Fig. 8 Plant growth promoting activities of Mesorhizobium (N=15) isolated from chickpea nodule
Fig. 9 Plant growth promoting activities of Rhizobium (N=15) isolated from pea nodule
Fig. 10 Plant growth promoting activities of Bradyrhizobium (N=10) isolated from greengram nodule
Fig. 11 Plant growth promoting activities of Rhizobium (N=10) isolated from lentil nodule
Fig. 12 Plant growth promoting activities of Azotobacter (N=20) isolated from rhizosphere
Fig. 13 Plant growth promoting activities of P-solubilizer (N=30) isolated from rhizosphere
Fig. 14 Phylogenetic tree of P. putida strain PSE3 and PSE5
Fig. 15 Phylogenetic tree of Achromobacter strain ES1 and ES6
Fig. 16 Phylogenetic tree of Enterobacter strain ES2
Fig. 17 Phylogenetic tree of *B. pumilus* strain ES3

Fig. 18 Phylogenetic tree of *Pseudoxanthomonas* strain ES4

Fig. 19 Phylogenetic tree of *Stenotrophomonas* strain ES5

Fig. 20 Indole acetic acid production by *M. ciceri* strain RG5 in Luria bertani broth supplemented with varying concentration of tryptophan (μg/ml) at different incubation periods

Fig. 21 Indole acetic acid production by *R. leguminosarum* strain RP2 in Luria bertani broth supplemented with varying concentration of tryptophan (μg/ml) at different incubation periods

Fig. 22 Indole acetic acid production by *Bradyrhizobium* strain RB6 in Luria bertani broth supplemented with varying concentration of tryptophan (μg/ml) at different incubation periods

Fig. 23 Indole acetic acid production by *Rhizobium* strain RV9 in Luria bertani broth supplemented with varying concentration of tryptophan (μg/ml) at different incubation periods

Fig. 24 Indole acetic acid production by *Azotobacter* strain AZ19 in Luria bertani broth supplemented with varying concentration of tryptophan (μg/ml) at different incubation periods

Fig. 25 Indole acetic acid production by *P. putida* strain PSE3 in Luria bertani broth supplemented with varying concentration of tryptophan (μg/ml) at different incubation periods

Fig. 26 Indole acetic acid production by *P. putida* strain PSE5 in Luria bertani broth supplemented with varying concentration of tryptophan (μg/ml) at different incubation periods

Fig. 27 Indole acetic acid production by *Achromobacter* strain ES1 in Luria bertani broth supplemented with varying concentration of tryptophan (μg/ml) at different incubation periods

Fig. 28 Indole acetic acid production by *Enterobacter* strain ES2 in Luria bertani broth supplemented with varying concentration of tryptophan (μg/ml) at different incubation periods

Fig. 29 Indole acetic acid production by *B. pumilus* strain ES3 in Luria bertani broth supplemented with varying concentration of tryptophan (μg/ml) at different incubation periods

Fig. 30 Indole acetic acid production by *Pseudoxanthomonas* strain ES4 in Luria bertani broth supplemented with varying concentration of tryptophan (μg/ml) at different incubation periods

Fig. 31 Indole acetic acid production by *Stenotrophomonas* strain ES5 in Luria bertani broth supplemented with varying concentration of tryptophan (μg/ml) at different incubation periods

Fig. 32 Indole acetic acid production by *Achromobacter* strain ES6 in Luria bertani broth supplemented with varying concentration of tryptophan (μg/ml) at different incubation periods

Fig. 33 Quantitative estimation of P-solubilization at different time interval in Pikovskaya broth by N-fixers

Fig. 34 Quantitative estimation of P-solubilization at different time interval in Pikovskaya broth by P-solubilizers

Fig. 35 Quantitative estimation of P-solubilization at different time interval in Pikovskaya broth by P-solubilizers

Fig. 36 Coinoculation effects of ACC deaminase producing *P. putida* strain
Fig. 37 Coinoculation effects of ACC deaminase producing *P. putida* strain PSE3 and *M. ciceri* strain RG5 on dry accumulation of chickpea plant grown in pot

Fig. 38 Coinoculation effects of ACC deaminase producing *B. pumilus* strain ES3 and *M. ciceri* strain RG5 on dry accumulation of chickpea plant grown in pot

Fig. 39 Coinoculation effects of ACC deaminase producing *B. pumilus* strain ES3 and *M. ciceri* strain RG5 on dry accumulation of chickpea plant grown in field

Fig. 40 Coinoculation effects of ACC deaminase producing *M. ciceri* strain RG5 and P- solubilizing *Azotobacter* strain AZ19 on dry accumulation of chickpea plant grown in pot

Fig. 41 Coinoculation effects of ACC deaminase producing *M. ciceri* strain RG5 and P- solubilizing *Azotobacter* strain AZ19 on dry accumulation of chickpea plant grown in field

Fig. 42 Coinoculation effects of ACC deaminase producing *P. putida* strain PSE3 and *R. leguminosarum* strain RP2 on dry accumulation of pea plant grown in pot

Fig. 43 Coinoculation effects of ACC deaminase producing *P. putida* strain PSE3 and *R. leguminosarum* strain RP2 on dry accumulation of pea plant grown in field

Fig. 44 Coinoculation effects of ACC deaminase producing *B. pumilus* strain ES3 and *R. leguminosarum* strain RP2 on dry accumulation of pea plant grown in pot

Fig. 45 Coinoculation effects of ACC deaminase producing *B. pumilus* strain ES3 and *R. leguminosarum* strain RP2 on dry accumulation of pea plant grown in field

Fig. 46 Coinoculation effects of ACC deaminase producing *R. leguminosarum* strain RP2 and P- solubilizing *Azotobacter* strain AZ19 on dry accumulation of pea plant grown in pot

Fig. 47 Coinoculation effects of ACC deaminase producing *R. leguminosarum* strain RP2 and P- solubilizing *Azotobacter* strain AZ19 on dry accumulation of pea plant grown in field

Fig. 48 Coinoculation effects of ACC deaminase producing *P. putida* strain PSE3 and *Bradyrhizobium* strain RG6 on dry accumulation of greengram plant grown in pot

Fig. 49 Coinoculation effects of ACC deaminase producing *P. putida* strain PSE3 and *Bradyrhizobium* strain RG6 on dry accumulation of greengram plant grown in field

Fig. 50 Coinoculation effects of ACC deaminase producing *B. pumilus* strain ES3 and *Bradyrhizobium* strain RG6 on dry accumulation of greengram plant grown in pot

Fig. 51 Coinoculation effects of ACC deaminase producing *B. pumilus* strain ES3 and *Bradyrhizobium* strain RG6 on dry accumulation of greengram plant grown in field

Fig. 52 Coinoculation effects of ACC deaminase producing *Bradyrhizobium* strain RG6 and P- solubilizing *Azotobacter* strain AZ19 on dry accumulation of greengram plant grown in pot
Fig. 53 Coinoculation effects of ACC deaminase producing *Bradyrhizobium* strain RG6 and *P.*-solubilizing *Azotobacter* strain AZ19 on dry accumulation of greengram plant grown in field

Fig. 54 Coinoculation effects of ACC deaminase producing *P. putida* strain PSE3 and *Rhizobium* strain RV9 on dry accumulation of lentil plant grown in pot

Fig. 55 Coinoculation effects of ACC deaminase producing *P. putida* strain PSE3 and *Rhizobium* strain RV9 on dry accumulation of lentil plant grown in field

Fig. 56 Coinoculation effects of ACC deaminase producing *B. pumilus* strain ES3 and *Rhizobium* strain RV9 on dry accumulation of lentil plant grown in pot

Fig. 57 Coinoculation effects of ACC deaminase producing *B. pumilus* strain ES3 and *Rhizobium* strain RV9 on dry accumulation of lentil plant grown in field

Fig. 58 Coinoculation effects of ACC deaminase producing *Rhizobium* strain RV9 and *P.*-solubilizing *Azotobacter* strain AZ19 on dry accumulation of lentil plant grown in pot

Fig. 59 Coinoculation effects of ACC deaminase producing *Rhizobium* strain RV9 and *P.*-solubilizing *Azotobacter* strain AZ19 on dry accumulation of lentil plant grown in field

Fig. 60 Linear regression of root length of chickpea grown in pot and field trials

Fig. 61 Linear regression of shoot length of chickpea grown in pot and field trials

Fig. 62 Linear regression of root length of pea grown in pot and field trials

Fig. 63 Linear regression of shoot length of pea grown in pot and field trials

Fig. 64 Linear regression of root length of greengram grown in pot and field trials

Fig. 65 Linear regression of shoot length of greengram grown in pot and field trials

Fig. 66 Linear regression of root length of lentil grown in pot and field trials

Fig. 67 Linear regression of shoot length of lentil grown in pot and field trials

Fig. 68 Linear regression of root dry biomass of chickpea grown in pot and field trials

Fig. 69 Linear regression of shoot dry biomass of chickpea grown in pot and field trials

Fig. 70 Linear regression of root biomass of pea grown in pot and field trials

Fig. 71 Linear regression of shoot biomass of pea grown in pot and field trials

Fig. 72 Linear regression of root biomass of greengram grown in pot and field trials

Fig. 73 Linear regression of shoot biomass of greengram grown in pot and field trials

Fig. 74 Linear regression of root biomass of lentil grown in pot and field trials

Fig. 75 Linear regression of shoot biomass of lentil grown in pot and field trials

Fig. 76 Linear regression of chlorophyll content of chickpea grown in pot and field trials

Fig. 77 Linear regression of chlorophyll content of pea grown in pot and field trials

Fig. 78 Linear regression of chlorophyll content of greengram grown in pot and field trials
Fig. 79 Linear regression of chlorophyll content of lentil grown in pot and field trials
Fig. 80 Linear regression of nodule no. of chickpea grown in pot and field trials
Fig. 81 Linear regression of nodule no. of pea grown in pot and field trials
Fig. 82 Linear regression of nodule no. of greengram grown in pot and field trials
Fig. 83 Linear regression of nodule no. of lentil grown in pot and field trials
Fig. 84 Linear regression of Lb content of chickpea grown in pot and field trials
Fig. 85 Linear regression of Lb content of pea grown in pot and field trials
Fig. 86 Linear regression of Lb content of greengram grown in pot and field trials
Fig. 87 Linear regression of Lb content of lentil grown in pot and field trials
Fig. 88 Linear regression of seed yield of chickpea grown in pot and field trials
Fig. 89 Linear regression of seed yield of pea grown in pot and field trials
Fig. 90 Linear regression of seed yield of greengram grown in pot and field trials
Fig. 91 Linear regression of seed yield of lentil grown in pot and field trials

List of Plates

Plate 1 Functional diversity of rhizobacteria (A) Bacillus (B, C and D) Pseudomonas sp. (E) Azotobacter
Plate 2 Phosphate solubilizers showing P-solubilization on Pikovskaya plate (A) P-solubilizer (B) Bacillus (B) Azotobacter (C) Searrata (D) Fungi (E) Pseudomonas sp.
Plate 3 Plant growth promoting activity (A) ACC deaminase positive strains on DF salt medium (B) IAA production (C) HCN production
Plate 4 Antifungal activity shown by PGPR (A) Alternaria sp. (B) Rhizoctonia sp. (C) Penicillium sp.
Plate 5 Scanning electron microscopy of bacterial strains (A) P. putida strain PSE3 (B) B. pumilus strain ES3 (C) Azotobacter strain AZ19
Plate 6 Effect of inoculation and fertilizer on greengram [T1 indicates Control; T2-Urea (30 kg/ha); T3-DAP (80 kg/ha); T4-B. pumilus; T5-M. ciceri; T6-Urea+ B. pumilus; T7- DAP+ M. ciceri; T8- B. pumilus + M. ciceri; T9-Urea +DAP]
Plate 7 Effect of inoculation and fertilizer on greengram [T1 indicates Control; T2-Urea (25 kg/ha); T3-DAP (85 kg/ha); T4-P. putida; T5-Bradyrhizobium; T6-Urea+ P. putida; T7- DAP+ Bradyrhizobium; T8-P. putida+ Bradyrhizobium; T9-Urea +DAP]
Plate 8 Effect of inoculation and fertilizer on chickpea plants in field trials
Plate 9 Effect of inoculation and fertilizer on pea plants in field trials
Plate 10 Nodulation of chickpea plant