## CONTENTS

1. Introduction 1-7

2. Literature Review 8-57

   2.1 Synthetic fertilizers and soil microorganisms
   2.2 Rhizosphere and root colonization
   2.3 Pulse production: A brief account
   2.4 Rhizobium–legume symbiosis: An overview
   2.5 Plant growth-promoting rhizobacteria: mechanism of action and growth promotion
     2.5.1 Some examples of positive plant growth regulators
       2.5.1.1 Phytohormones: Importance in plant growth
       2.5.2 Other phytohormones
       2.5.1.5 Growth modulation enzyme ACC deaminase: An overview
       2.5.1.5.1 Role of ACC deaminase in nodulation
       2.5.1.6 Microbial phosphate solubilization: Current perspectives
       2.5.1.6.1 Mechanism of P-solubilisation: A brief account
       2.5.1.6.2 Functional diversity among phosphate solubilizing bacteria
       2.5.1.7 Siderophores: A general outlook
       2.5.1.7.1 Siderophores and BNF
       2.5.1.8 Antibiotics production by Plant Growth Promoting Rhizobacteria
       2.5.1.9 Production of cyanogenic compounds
       2.5.1.10 Production of lytic enzymes
       2.5.1.11 PGPR-crop interactions: Importance in sustainable agriculture
       2.5.1.11.1 Response of PSM inoculation to crops
       2.5.1.11.2 Synergistic effect of phosphate solubilizing bacteria with other PGPR/AM-fungi
       2.5.1.11.3 Some examples of inoculation effects of phosphate solubilizers on cereal crops
3. Materials and Methods

3.1 Collection of soil samples and microbial diversity
3.2.1 Isolation of symbiotic and asymbiotic nitrogen fixer
3.2.2 Isolation and screening of phosphate solubilizing bacteria
3.3 Identification of the potential plant growth promoting rhizobacterial strains
3.3.1.1 Morphological characteristics
3.3.1.2 Gram reaction
3.3.2 Biochemical properties
3.3.2.1 Indole reaction
3.3.2.2 Citrate utilization test
3.3.2.3 Methyl red test
3.3.2.4 Nitrate reduction test
3.3.2.5 Voges-Proskauer test
3.3.2.6 Catalase test
3.3.2.7 Oxidase test
3.3.2.8 Starch hydrolysis test
3.3.2.9 Gelatin hydrolysis
3.3.2.10 Lipid hydrolysis test
3.3.2.11 Mannitol salt utilization
3.3.2.12 Sugar fermentation test
3.4 Antibiotic sensitivity behaviour of isolated cultures
3.5 Screening of bacterial strain for 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity
3.6.1 Identification based on 16S rRNA sequencing
3.6.2 Construction of phylogenetic tree
3.7.1 Quantitative assay of P-solubilization
3.7.2 Quantitative assay of ACC deaminase activity
3.7.2 Quantitative assay of indole acetic acid
3.7.3 Qualitative and quantitative estimation of siderophores
3.7.4 Assay of hydrogen cyanide (HCN) and ammonia
3.7.5 Bioassay of exo-polysaccharides
3.7.6 Determination of antifungal activity
3.8 Scanning Electron Microscopy
3.9 Pot and field experiment
3.9.1 Seed and planting of legume
3.9.2 Microbial treatments, fertilizer application and legume growth
3.9.3.1 Parameters measured
3.9.3.2 Length, biomass production and symbiotic attributes
3.9.3.3 Quantitative estimation of legheamoglobin
3.9.3.4 Total chlorophyll content
3.9.3.5 Nutrient accumulation in legume plants
3.9.3.6 Seed yield and grain protein
3.10 Statistical analysis

4. Results

4.1 Microbial diversity in different rhizospheric soils
4.2 Characterization of nitrogen fixing and phosphate solubilizing
4.3 Functional diversity among plant growth promoting rhizobacteria
4.4 Bioassay of plant growth promoting activities
4.4.1 Quantitative analysis of ACC deaminase activity
4.4.2 Qualitative and quantitative assay of phosphorus
4.4.2.1 Quantitative assay of P-solubilization at different time intervals
4.4.3 Bioassay of Indole acetic acid
4.4.3.1 Effect of Tryptophan concentration and time dependent production of IAA
4.4.4 Bioassay of siderophores
4.4.5 Bioassay of exo-polysaccharides
4.4.6 In vitro assay of ammonia and HCN
4.4.7 Antifungal activity of N2-fixers and P-solubilizers
4.5 Antibiotic sensitivity of bacterial isolates
4.6 Identification of selected PGPR strains by 16S rRNA sequencing
4.7 Phylogenetic tree of molecularly characterized bacterial isolates

Pot and field trials

Chickpea

4.8 Length of plant organs
4.8.1.1 Root
4.8.1.2 Shoot
4.8.2 Dry matter accumulation
4.8.2.1 Root
4.8.2.2 Shoot
4.8.2.3 Total dry biomass accumulation
4.8.3 Photosynthetic pigments and symbiotic attributes
4.8.4 Nodulation and leghaemoglobin content
4.8.5 Concentration and uptake of N and P
4.8.6 Seed yield and seed protein

Pea

4.9 Length of plant organs
4.9.1.1 Root
4.9.1.2 Shoot
4.9.2 Dry matter accumulation
4.9.2.1 Root
4.9.2.2 Shoot
4.9.2.3 Total dry biomass accumulation
4.9.3 Photosynthetic pigments and symbiotic attributes
4.9.4 Nodulation and leghaemoglobin content
4.9.5 Concentration and uptake of N and P
4.9.6 Seed yield and seed protein

Greengram

4.10 Length of plant organs
4.10.1.1 Root
4.10.1.2 Shoot
4.10.2 Dry matter accumulation
4.10.2.1 Root
4.10.2.2 Shoot
4.10.2.3 Total dry biomass accumulation
4.10.3 Photosynthetic pigments and symbiotic attributes
4.10.4 Nodulation and leghaemoglobin content
4.10.5 Concentration and uptake of N and P
4.10.6 Seed yield and seed protein
Lentil

4.11 Length of plant organs
4.11.1.1 Root
4.11.1.2 Shoot
4.11.2 Dry matter accumulation
4.11.2.1 Root
4.11.2.2 Shoot
4.11.2.3 Total dry biomass accumulation
4.11.3 Photosynthetic pigments and symbiotic attributes
4.11.4 Nodulation and leghaemoglobin content
4.11.5 Concentration and uptake of N and P
4.11.6 Seed yield and seed protein

Table 116-178
Figure 179-204
Plates 205-214

5. Discussion 215-245

5.1. Microbial diversity in rhizospheric soils of legume and non-legume crops
5.2. Characterization of plant growth promoting rhizobacteria
5.3.1 Functional diversity of PGPR
5.3.2 ACC deaminase activity of PGPR
5.3.3 Phosphate solubilization
5.3.4.1 Bacterial biosynthesis of indole acetic acid
5.3.4.2 Time and tryptophan concentration dependent production of IAA
5.3.5 Siderophore production
5.3.6 Exo-polysaccharide production
5.3.7 Ammonia and hydrogen cyanide production
5.3.8 Antifungal activity
5.6 Antibiotic sensitivity of PGPR
5.5 Molecular characterization
5.6.1 Biological properties of legumes
5.6.2 Chlorophyll content
5.6.3 Symbiotic characteristics
5.6.4 Leghaemoglobin content