Figure Ai Membrane fouling mechanism for mixed juice: UFPES50 (Note: Since the unit of \(J \) is L/m²·h, in all the plots, the \(K \) values obtained were multiplied by the following conversion factors before reporting in Table 5.2: \(K_i \) by 3600000, \(K_s \) by \((3600000)^{1/2}\), \(K_c \) by \((3600000)^2\)
Figure Aii Membrane fouling mechanism for mixed juice: UF-PES-050H
Figure Ai. Membrane fouling mechanism for mixed juice: UF-PS-100H
Figure Aiv Membrane fouling mechanism for mixed juice:P150F
Figure AAi Membrane fouling mechanism for clarified juice: P010F
Figure Aii Membrane fouling mechanism for clarified juice: GR81PP
Figure AAiii Membrane fouling mechanism for clarified juice: HFUF15
Figure AAiv Membrane fouling mechanism for clarified juice: P020F
Figure AAv Membrane fouling mechanism for clarified juice: GR61PP
Figure AAvi Membrane fouling mechanism for clarified juice: GR60PP
Figure AAvii Membrane fouling mechanism for clarified juice: HFUF30
Figure AAviii Membrane fouling mechanism for clarified juice: UF-PES-030H
Figure AAix Membrane fouling mechanism for clarified juice: UFPE50
Figure A.1: Membrane fouling mechanism for clarified juice. GR51PP
Figure Axi Membrane fouling mechanism for clarified juice: GR40PP
Figure Axi. Membrane fouling mechanism for clarified juice: UF-PS-100H.
Figure AAxi iii Membrane fouling mechanism for clarified juice: P150F
Annexure II

Since the unit of J is L/m²h, the K values were multiplied by the following conversion factors before reporting in Table 5.15: Kᵢ by 3600000, Kₛ by \((3600000)^{1/2}\), Kᵥ by \((3600000)^2\)
Figure Membrane fouling mechanism for polysaccahride with UF-PES-050H in successive fouling-cleaning cycles