<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xiv</td>
</tr>
<tr>
<td>I INTRODUCTION</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1.1. Tobacco and its components</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1.2. Risks associated with tobacco use</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1.3. Nicotine as the major addictive alkaloid in tobacco</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>1.4. Mechanism of addiction</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>1.4.1. Nicotinic Acetylcholine Receptors</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>1.4.2. Nicotine and neurotransmitter release</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>1.5. Nicotine lethality</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>1.6. Nicotine withdrawal symptoms</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>1.7. Genetics of Smoking</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>1.8. Complexity in tobacco use legislations</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>1.9. Nicotine threshold levels in cigarettes to avert addiction</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>1.10. FDA approved nicotine weaning methods</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>1.11. Genetic engineering for low nicotine tobacco</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>II REVIEW OF LITERATURE</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>2.1. Plant Secondary metabolism</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>2.1.1. Secondary metabolism: function and significance</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>2.1.2. Co-evolution of Secondary metabolic pathways</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>2.1.3. Regulation of secondary metabolism</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>2.2. Plant alkaloids</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>2.2.1. Diversity and inducibility of plant alkaloids</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>2.2.2. Alkaloids are pharmacologically active</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>2.3. Alkaloid biosynthesis in tobacco</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>2.3.1. Nicotiana tabacum as a model plant</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>2.3.2. Genetic regulation of alkaloid biosynthesis by breeding</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>2.4. Nicotine</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>2.4.1. Nicotine induction by biotic and abiotic factors</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>2.4.2 Phytohormones and nicotine inducibility</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>2.5. Nicotine biosynthetic pathway</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>2.5.1 Formation of the pyrrolinium ring</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>2.5.2. Formation of the pyridine ring</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>2.6. Enzymes involved in nicotine biosynthesis</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>2.6.1. Ornithine decarboxylase (ODC)</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>
2.6.2. Arginine decarboxylase (ADC)
2.6.3. Quinolinic acid phosphoribosyltransferase (QPRT)
2.6.4. N-methylputrescine oxidase (MPO)
2.6.5. Putrescine N-methyltransferase (PMT)

2.7. Putrescine N-methyl transferase and nicotine content
2.7.1. Evolution of putrescine N-methyl transferase
2.7.2. Putrescine N-methyl transferase expression is inducible

2.8. RNA interference pathway
2.8.1. Biogenesis of siRNA
2.8.2. RISC complex

2.9. RNA interference a targeted approach for crop improvement

III MATERIALS AND METHODS
3.1. Materials
3.1.1. Plant material
3.1.2. Chemicals and consumables
3.1.3. Enzymes and reaction kits
3.1.4. Plasmid Vectors
3.1.4.1. pUC18
3.1.4.2. pCAMBIA 2300
3.1.5. Bacterial strains
3.1.5.1. Escherichia coli DH10B-T1R
3.1.5.2. Agrobacterium tumefaciens LBA4404
3.1.6. Sampling of cigarette tobacco
3.1.7. DNA oligo sequences
3.1.8. Plant tissue culture media
3.1.9. Reagents and buffers used in the study
3.2. General protocols
3.2.1. Bacterial Cloning
3.2.1.1. Cloning in Escherichia coli
3.2.1.1.1. Isolation of plasmid
3.2.1.1.2. Restriction digestion and ligation
3.2.1.1.3. DNA elution from agarose gel
3.2.1.1.4. Escherichia coli competent cell preparation
3.2.1.1.5. Escherichia coli transformation
3.2.1.1.6. Colony PCR
3.2.1.2. Cloning in Agrobacterium tumefaciens
3.2.1.2.1. Confirmation test for Agrobacterium
3.2.1.2.2. Agrobacterium tumefaciens competent cell preparation
3.2.1.2.3. Agrobacterium tumefaciens transformation
3.2.2. Plant tissue culture and tobacco transformation 41
 3.2.2.1. Sub Culturing of Tobacco plants 41
 3.2.2.2. Agrobacterium mediated tobacco transformation 41

3.2.3. Molecular techniques 42
 3.2.3.1. Isolation of plant genomic DNA 42
 3.2.3.2. Isolation of RNA from tobacco root tissue 42
 3.2.3.2.1. RNA quantification 43

3.2.4. Polymerase chain reaction 44
3.2.5. Reverse transcription PCR 45
3.2.6. Quantitative RT-PCR 46

3.2.7. Southern hybridization and detection 47
 3.2.7.1. Southern transfer 47
 3.2.7.2. UV-crosslinking of the nylon membrane 48
 3.2.7.3. Labeling of DNA probe 48
 3.2.7.4. Hybridization and Detection 48

3.3. Methodology 49
 3.3.1. Design of the RNAi trigger sequence 49
 3.3.2. Construction of RNAi vector 50
 3.3.3. *Nicotiana tabacum* cv. Petite Havana tissue culture 51
 3.3.4. *Agrobacterium tumefaciens* mediated plant transformation 51
 3.3.5. Screening of the transgenic plants by PCR and Southern hybridization 51
 3.3.6. Analysis of the expression of PMT multigene family by quantitative PCR 52
 3.3.6.1. Relative expression without PCR efficiency correction 52
 3.3.7. Quantification of nicotine content by HPLC 52
 3.3.8. Liquid Chromatography and Mass Spectroscopy 53
 3.3.9. Statistical analysis 53

IV RESULTS 54
4.1. Design of RNAi trigger 54
 4.1.1. Phylogenetic analysis 54
 4.1.2. Identification of the RNAi trigger 55
 4.1.2.1. PMT is a highly conserved gene family 55
 4.1.2.2. Identification of the RNAi trigger using sequence alignment 56
 4.1.2.3. Mismatch alignment of RNAi trigger with PMT genes 57
 4.1.2.4. Prediction of guide siRNA using siRNA design tool of IDT 57
 4.1.2.5. Nucleotide mismatches between predicted guide siRNA and PMT genes 60
 4.2. Construction of RNAi vector 61
4.3. Agrobacterium mediated transformation of tobacco 61
4.4. Screening of transgenic RNAi plants by PCR 62
4.5. Confirmation and estimation of copy number in transgenic plants by Southern hybridization 63
4.6. Analysis of the relative abundance of \textit{PMT} isogenes 64
4.6.1 Analysis of PMT isogenes by semi-quantitative multiplex RT-PCR 64
4.6.2. Quantitative RT-PCR 66
4.6.2.1. Standardization of qPCR 66
4.6.2.2. qPCR analysis of the \textit{PMT} isogenes 67
4.7. Analysis of methanolic extracts of leaves in wild type tobacco and RNAi lines 68
4.7.1. Nicotine content in transgenic plants of T0 generation 68
4.7.2. Nicotine content in stable second generation RNAi plants 70
4.8. Characterization of the compensating metabolite 72
4.9. Nicotine content in Indian cigarettes 75
4.10. Statistical analysis 75

V DISCUSSION 76
5.1. Design of the RNAi trigger 76
5.1.1. \textit{PMT}2 the major target for low nicotine tobacco 76
5.1.2. Identification and design of RNAi trigger 76
5.2. RNAi vector 77
5.3. Production of transgenic plants by agrobacterium mediated plant transformation 77
5.4. Screening of putative transgenic plants by PCR 77
5.5 Southern hybridization confirms transgene integration and copy number. 78
5.6. RNAi tobacco plants and \textit{PMT} genes expression 78
5.6.1. Semi-quantitative multiplex RT-PCR 78
5.6.2. Quantitative RT-PCR 78
5.6.3. RNAi trigger and cross silencing of \textit{PMT}1/5 and \textit{PMT}3 79
5.7. Low nicotine tobacco plants 79
5.8. Identification of the compensating compound 80
5.9. Nicotine content in Indian cigarettes 82
5.10 Reduction of nicotine content is statistically significant. 83
5.11. Low nicotine tobacco application 83
5.11.1. Social application 83
5.11.2. Application in the field of research 84

VI CONCLUSION 85
REFERENCES 86
APPENDICES 98