In this chapter we present the background needed for the study of multi-fuzzy sets. We develop the theory of multi-fuzzy sets on the platform of fuzzy set theory. The knowledge about the developments of fuzzy sets is sufficient as a prerequisite and so we recall some basic definitions and results consisting of fuzzy sets, intuitionistic fuzzy sets, L-fuzzy sets, order homomorphisms, lattice valued lattices, fuzzy topology, fuzzy groups and fuzzy logic.

1.1 Fuzzy Sets

In Cantor’s set theory, a set is defined uniquely by its elements; an element of the universe is either in or outside the set. That is, the membership function of a set (crisp set) assigns a value of either 1 or 0 to each element in the universe. Zadeh \cite{107} extended the range of membership functions into the closed interval $[0, 1]$.

Definition 1.1.1. \cite{107} Let X be a nonempty set. A fuzzy set A of X is a mapping

$$A : X \rightarrow [0, 1]$$
A : X → [0, 1], that is,

\[A = \{(x, \mu_A(x)) : \mu_A(x) \text{ is the grade of membership of } x \text{ in } A, x \in X\}. \]

The set of all the fuzzy sets on \(X \) is denoted by \(\mathcal{F}(X) \).

Let \(A \) and \(B \) be fuzzy sets on a universal set \(X \), with the grade of membership of \(x \) in \(A \) and \(B \) denoted by \(\mu_A \) and \(\mu_B \) respectively. Zadeh \[107\] defined the following relations and operations:

- \(A = B \iff \mu_A(x) = \mu_B(x), \forall x \in X; \)
- \(A \subseteq B \iff \mu_A(x) \leq \mu_B(x), \forall x \in X; \)
- \(\mu_{A\cup B}(x) = \max\{\mu_A(x), \mu_B(x)\}, \forall x \in X; \)
- \(\mu_{A\cap B}(x) = \min\{\mu_A(x), \mu_B(x)\}, \forall x \in X; \)
- \(\mu_A'(x) = 1 - \mu_A(x), \forall x \in X, \) where \(A' \) is the standard fuzzy complement of \(A \).

Definition 1.1.2. \[49\] A function \(t : [0, 1] \times [0, 1] \to [0, 1] \) is a \(t \)-norm if \(\forall a, b, c \in [0, 1]: \)

1. \(t(a, 1) = a; \)
2. \(t(a, b) = t(b, a); \)
3. \(t(a, t(b, c)) = t(t(a, b), c); \)
4. \(b \leq c \) implies \(t(a, b) \leq t(a, c). \)

Similarly, a \(t \)-conorm (\(s \)-norm) is a commutative, associative and non-decreasing mapping \(s : [0, 1] \times [0, 1] \to [0, 1] \) that satisfies the boundary condition:
\[s(a, 0) = a, \text{ for all } a \in [0, 1]. \]

Definition 1.1.3.\(^3\)\(^8\) A function \(c : [0, 1] \to [0, 1] \) is called a complement (fuzzy) operation, if it satisfies the following conditions:

1. \(c(0) = 1 \) and \(c(1) = 0 \),

2. for all \(a, b \in [0, 1] \), if \(a \leq b \), then \(c(a) \geq c(b) \).

Definition 1.1.4.\(^3\(^8\) A \(t \)-norm \(t \) and a \(t \)-conorm \(s \) are dual with respect to a fuzzy complement operation \(c \) if and only if

\[
\begin{align*}
 c(t(a, b)) &= s(c(a), c(b)) \\
 \text{and} \\
 c(s(a, b)) &= t(c(a), c(b)),
\end{align*}
\]

for all \(a, b \in [0, 1] \).

Definition 1.1.5.\(^3\(^8\) Let \(n \) be an integer greater than or equal to 2. A function \(h : [0, 1]^n \to [0, 1] \) is said to be an aggregation operation for fuzzy sets, if it satisfies the following conditions:

1. \(h \) is continuous;

2. \(h \) is monotonic increasing in all its arguments;

3. \(h(0, 0, ..., 0) = 0 \);

4. \(h(1, 1, ..., 1) = 1 \).

1.1.1 Zadeh’s Extension of Functions

For the sake of simplicity we will use \(A(x) \) and \(f(A)(y) \) instead of \(\mu_A(x) \) and \(\mu_{f(A)}(y) \) respectively.
Definition 1.1.6. Let \(f : X \to Y \) be a crisp function. The fuzzy extension of \(f \) and the inverse of the extension are \(f : \mathcal{F}(X) \to \mathcal{F}(Y) \) and \(f^{-1} : \mathcal{F}(Y) \to \mathcal{F}(X) \) defined by

\[
f(A)(y) = \bigvee_{y=f(x)} A(x), \ A \in \mathcal{F}(X), \ y \in Y
\]

and

\[
f^{-1}(B)(x) = B(f(x)), \ B \in \mathcal{F}(Y), \ x \in X.
\]

Theorem 1.1.7. \[14\] Let \(f \) be a function from \(X \) to \(Y \), then:

1. \((f^{-1}(B))' = f^{-1}(B') \), for any fuzzy set \(B \) in \(Y \);
2. \((f(A))' \subseteq f(A') \), for any fuzzy set \(A \) in \(X \);
3. \(B_1 \subseteq B_2 \) implies \(f^{-1}(B_1) \subseteq f^{-1}(B_2) \), where \(B_1, B_2 \) are fuzzy sets in \(Y \);
4. \(A_1 \subseteq A_2 \) implies \(f(A_1) \subseteq f(A_2) \), where \(A_1, A_2 \) are fuzzy sets in \(X \);
5. \(A \subseteq f^{-1}(f(A)) \), for any fuzzy set \(A \) in \(X \);
6. \(f(f^{-1}(B)) \subseteq B \), for any fuzzy set \(B \) in \(Y \).

1.2 Lattices and Lattice Valued Mappings

One of the important concepts in all of mathematics is that of a relation. Among various kinds of relations, equivalence relations, functions and order relations have major role in our study. Here we concentrate on the latter concept.

Definition 1.2.1. (See [8]) A partially ordered set (or poset) is a set in which a binary relation \(x \leq y \) is defined, which satisfies for all \(x, y, z \) the following conditions:

P1. For all \(x \), \(x \leq x \). (Reflexivity)
1.2. LATTICES AND LATTICE VALUED MAPPINGS

P2. If \(x \leq y \) and \(y \leq x \), then \(x = y \). \(\text{(Antisymmetry)}\)

P3. If \(x \leq y \) and \(y \leq z \), then \(x \leq z \). \(\text{(Transitivity)}\)

Definition 1.2.2. (See [8]) A mapping \(f \) from a poset \(P \) into a poset \(Q \) is called order preserving, if \(x \leq y \) implies \(f(x) \leq f(y) \). A mapping \(g \) from \(P \) into \(Q \) is called an order reversing function (antitone) if and only if \(x \leq y \) implies \(g(y) \leq g(x) \).

Definition 1.2.3. (See [8]) A lattice is a partially ordered set in which \(x \land y = \inf(x, y) \) and \(x \lor y = \sup(x, y) \) exist for any pair of elements \(x \) and \(y \). A sublattice of a lattice \(L \) is a subset \(X \) of \(L \) such that \(a, b \in X \) implies \(a \land b \in X \) and \(a \lor b \in X \). A lattice \(L \) is complete when each of its subsets \(X \) has a l.u.b (sup) and a g.l.b (inf) in \(L \). A lattice \(L \) is said to be distributive, if
\[
\begin{align*}
 x \land (y \lor z) &= (x \land y) \lor (x \land z) \\
 x \lor (y \land z) &= (x \lor y) \land (x \lor z),
\end{align*}
\]
for every \(x, y, z \in L \).

A lattice \(L \) is said to have a lower bound \(0_L \), if \(0_L \leq x, \forall x \in L \). Analogously, \(L \) is said to have an upper bound \(1_L \), if \(x \leq 1_L, \forall x \in L \). We say \(L \) is bounded, if \(L \) has both a lower bound \(0_L \) and an upper bound \(1_L \). In such a lattice we have the identities \(0_L \land x = 0_L, 0_L \lor x = x, 1_L \land x = x \) and \(1_L \lor x = 1_L \). Any finite lattice is bounded as well as complete. An element \(a \in L \) is called a complement of an element \(b \in L \), if \(a \land b = 0_L \) and \(a \lor b = 1_L \). A lattice \(L \) is said to be complemented if \(L \) is bounded and every element in \(L \) has a complement. In a bounded distributive lattice, complements are unique, if they exist.

Definition 1.2.4. (See [104]) A complete lattice \(L \) is called infinitely distributive, if it satisfies the conditions:
\[
a \land \bigvee_{b \in B} B = \bigvee_{b \in B} (a \land b) \quad \text{and} \quad a \lor \bigwedge_{b \in B} B = \bigwedge_{b \in B} (a \lor b), \forall a \in L, \forall B \subseteq L.
\]

Proposition 1.2.5. (See [104]) A complete lattice \(L \) is infinitely distributive if and
only if
\[\bigvee A \land \bigvee B = \bigvee_{a \in A, b \in B} (a \land b) \quad \text{and} \quad \bigwedge A \lor \bigwedge B = \bigwedge_{a \in A, b \in B} (a \lor b), \forall A, B \subseteq L. \]

Proposition 1.2.6. (See [8]) In any poset \(P \), the operations of meet and join satisfy the following laws, whenever the expressions exist:

L1. \(x \land x = x, \ x \lor x = x. \) (Idempotent)

L2. \(x \land y = y \land x, \ x \lor y = y \lor x. \) (Commutative)

L3. \(x \land (y \land z) = (x \land y) \land z, \ x \lor (y \lor z) = (x \lor y) \lor z. \) (Associative)

L4. \(x \land (x \lor y) = x \lor (x \land y) = x. \) (Absorption)

Moreover \(x \leq y \) is equivalent to each of the conditions:

\(x \land y = x \) and \(x \lor y = y. \) (Consistency)

Note 1.2.7. (See [8]) A semilattice is a set \(L \) with a binary operation \(' \ast ' \) which is idempotent, commutative and associative. Let \(P \) be any poset in which any two elements have a meet. Then \(P \) is a semilattice with respect to the binary operation \(\land \). Such semilattices are called meet-semilattices. Join-semilattices are defined in a similar manner. Any system \(L \) with two binary operations which satisfy the conditions L1, L2, L3 and L4 is a lattice, and conversely.

1.2.1 Operations on Lattices

Definition 1.2.8. (See [104]) If \(\{ L_j : j \in J \} \) is a family of lattices, then the product \(\prod_{j \in J} L_j \) is a lattice if for arbitrary \(x, y \in \prod_{j \in J} L_j \), the join \(x \lor y \) and the meet \(x \land y \) of \(x, y \) are defined as for every \(j \in J \) and for every \(x_j, y_j \in L_j \):

\[(x \lor y)_j = x_j \lor y_j \]
and

$$(x \land y)_j = x_j \land y_j$$

or, equivalently, $x \leq y$ is defined by

$$x_j \leq_j y_j, \forall j \in J,$$

where \leq and \leq_j are the order relations in $\prod_{j \in J} L_j$ and L_j respectively.

Proposition 1.2.9. (See [104]) Let $\{L_j : j \in J\}$ be a family of posets. Then:

1. $\prod_{j \in J} L_j$ is a poset if and only if $\forall j \in J$, L_j is a poset;
2. $\prod_{j \in J} L_j$ is a lattice if and only if $\forall j \in J$, L_j is a lattice;
3. $\prod_{j \in J} L_j$ is a complete lattice if and only if $\forall j \in J$, L_j is a complete lattice;
4. $\prod_{j \in J} L_j$ is a distributive lattice if and only if $\forall j \in J$, L_j is a distributive lattice;
5. $\prod_{j \in J} L_j$ is an infinitely distributive lattice if and only if $\forall j \in J$, L_j is an infinitely distributive lattice.

Definition 1.2.10. (See [8]) Let $\theta: L \to M$ be a function from a lattice L to a lattice M. Then θ is order preserving (isotone) when $x \leq y$ implies $\theta(x) \leq \theta(y)$; a join-morphism (join homomorphism) when

$$\theta(x \lor y) = \theta(x) \lor \theta(y) \text{ for all } x, y \in L.$$ (1.i)

and a meet-morphism (meet homomorphism) when

$$\theta(x \land y) = \theta(x) \land \theta(y) \text{ for all } x, y \in L.$$ (1.ii)

θ is a lattice morphism (lattice homomorphism) when (1.i) and (1.ii) hold.
A lattice homomorphism is called: (i) an isomorphism if it is a bijection, (ii) an epimorphism if it is onto, (iii) a monomorphism if it is one-one, (iv) an endomorphism if \(L = M \), (v) an automorphism if it is an isomorphism and \(L = M \).

Definition 1.2.11. (See [104]) Let \(L \) and \(M \) be complete lattices and \(h : L \to M \) be a mapping. The map \(h \) is called a complete join preserving or arbitrary join preserving map, if for any \(A \subseteq L \)

\[
h(\bigvee A) = \bigvee_{x \in A} h(x); \quad (1.iii)
\]
a complete meet preserving or arbitrary meet preserving map if for any \(A \subseteq L \),

\[
h(\bigwedge A) = \bigwedge_{x \in A} h(x). \quad (1.iv)
\]

The map \(h \) is a complete lattice homomorphism when (1.iii) and (1.iv) hold.

Definition 1.2.12. (See [104]) Let \(L \) be a lattice. A mapping \(\cdot' : L \to L \) is called an order reversing involution, if for all \(a, b \in L \):

1. \(a \leq b \Rightarrow b' \leq a' \);
2. \((a')' = a \).

The symbols \(\cdot' \) and \(\cdot' \) are used in this thesis for order reversing involutions.

Definition 1.2.13. [89] Let \(\cdot' : M \to M \) and \(\cdot' : L \to L \) be order reversing involutions. A mapping \(h : M \to L \) is called an order homomorphism, if it satisfies the conditions:

1. \(h(0_M) = 0_L \);
2. \(h(\bigvee a_i) = \bigvee h(a_i) \);
3. \(h^{-1}(b') = (h^{-1}(b))' \),

where \(h^{-1} : L \to M \) is defined by, for every \(b \in L \),

\[
h^{-1}(b) = \bigvee \{ a \in M : h(a) \leq b \}.
\]
Proposition 1.2.14. \(89\) If \(': \, M \to M\) and \(': \, L \to L\) are order reversing involutions and \(h : \, M \to L\) is an order homomorphism, then for every \(a, a_i \in M\) and \(b, b_i \in L\)

(1) \(h^{-1}(0_L) = 0_M\);

(2) \(h^{-1}(1_L) = 1_M\);

(3) \(a_1 \leq a_2\) implies \(h(a_1) \leq h(a_2)\), that is, \(h\) is an order preserving map;

(4) \(b_1 \leq b_2\) implies \(h^{-1}(b_1) \leq h^{-1}(b_2)\), that is, \(h^{-1}\) is an order preserving map;

(5) \(a \leq h^{-1}(b)\) if and only if \(h(a) \leq b\) if and only if \(h^{-1}(b') \leq a'\);

(6) \(h^{-1}(\lor b_i) = \lor h^{-1}(b_i)\), that is, \(h^{-1}\) is an arbitrary join preserving map;

(7) \(h^{-1}(\land b_i) = \land h^{-1}(b_i)\), that is, \(h^{-1}\) is an arbitrary meet preserving map;

(8) \(a \leq h^{-1}(h(a))\);

(9) \(h(h^{-1}(b)) \leq b\).

Proposition 1.2.15. \(103\) Let \(f : \, L_1 \to L_2\) be a union (join) preserving map. If \(f\) is injective, then

\[
f^{-1}(f(a)) = a, \forall a \in L_1
\]

and if \(f\) is surjective, then

\[
f(f^{-1}(b)) = b, \forall b \in L_2.
\]

1.2.2 L-fuzzy Sets

Definition 1.2.16. \(27\) Let \(X\) be a nonempty ordinary set and \(L\) be a partially ordered set. An \(L\)-fuzzy set on \(X\) is a mapping \(A : \, X \to L\), that is, the family of all the \(L\)-fuzzy sets on \(X\) is just \(L^X\) consisting of all the mappings from \(X\) to \(L\).
Equality of L-fuzzy sets and inclusion of L-fuzzy sets are defined in similar to the respective relations on fuzzy sets. For any $A, B \in L^X$, the membership functions of $A \cup B$ and $A \cap B$ are defined as follows:

\[
\mu_{A \cup B}(x) = \mu_A(x) \lor \mu_B(x) \quad \text{and} \\
\mu_{A \cap B}(x) = \mu_A(x) \land \mu_B(x), \quad \text{for all } x \in X.
\]

Definition 1.2.17. [38][12] Let X be a nonempty ordinary set, L be a complete lattice, $\alpha \in L$ and $A \in L^X$. An α-level set (or α-cut) of a fuzzy set A is a crisp set

\[A_{[\alpha]} = \{ x \in X : \alpha \leq A(x) \}. \]

A_{α} is also denoted by α-level set of the fuzzy set A.

1.3 Intuitionistic Fuzzy Sets

Throughout this thesis intuitionistic fuzzy set means Atanassov intuitionistic fuzzy sets. It is a generalization of the notion of Zadeh’s fuzzy sets with the condition that the sum of degrees of membership and nonmembership is less than or equal to one.

Definition 1.3.1. [3] An Intuitionistic Fuzzy Set on X is a set

\[A = \{ (x, \mu_A(x), \nu_A(x)) : x \in X \}, \]

where $\mu_A(x) \in [0, 1]$ denotes the membership degree and $\nu_A(x) \in [0, 1]$ denotes the non-membership degree of x in A and

\[\mu_A(x) + \nu_A(x) \leq 1, \forall x \in X. \]
Definition 1.3.2. Let L be a complete lattice with an order reversing involution $\mathcal{N} : L \to L$. An intuitionistic L-fuzzy set (lattice valued intuitionistic fuzzy set) is an object of the form

$$A = \{(x, \mu_1(x), \mu_2(x)) : x \in X\},$$

where μ_1 and μ_2 are functions $\mu_1 : X \to L$, $\mu_2 : X \to L$, such that for all $x \in X$,

$$\mu_1(x) \leq \mathcal{N}(\mu_2(x)).$$

1.4 Fuzzy Topology

Among various branches of Mathematics, Topology is one of the first subjects where the notion of fuzzy sets was applied. Chang [14] introduced the concept of fuzzy topology, and subsequently Lowen [45] proposed a modified definition of fuzzy topology. Wong [92], Conrad [16] and Mira [51] studied various aspects of fuzzy topology.

Definition 1.4.1. A fuzzy topology is a family τ of fuzzy sets in X which satisfies the following conditions:

1. $\phi, X \in \tau$;
2. If $A, B \in \tau$, then $A \cap B \in \tau$;
3. If $A_i \in \tau$ for each $i \in I$, then $\bigcup_{i \in I} A_i \in \tau$.

Note 1.4.2. The ordered pair (X, τ) is called a fuzzy topological space (or fts for short). Fuzzy sets in τ are called τ-open fuzzy sets in X, simply open fuzzy sets in X. A fuzzy set $A \in \mathcal{F}(X)$ is called τ-closed if and only if its complement A' is τ-open. The collection of all constant fuzzy sets in X is a fuzzy topology on X.

Definition 1.4.3. $\delta \subseteq \mathcal{F}(X)$ is a fuzzy topology on X if and only if:

1. $\alpha \in \delta$, for every constant $\alpha \in \mathcal{F}(X)$;
(2) \(A \cap B \in \delta \), for every \(A, B \in \delta \);

(3) \(\bigvee_{i \in I} A_i \in \delta \), for every \(A_i \in \delta \).

Definition 1.4.4. [14] A fuzzy set \(U \) in a fts \((X, \tau)\) is a neighborhood of a fuzzy set \(C \) if and only if there exists an open fuzzy set \(O \) such that \(C \subseteq O \subseteq U \). Let \(A \) and \(B \) be fuzzy sets in a fts \((X, \tau)\), and let \(B \subseteq A \). Then \(B \) is called an interior fuzzy set of \(A \) if and only if \(A \) is a neighborhood of \(B \). The union of all interior fuzzy sets of \(A \) is called the interior of \(A \) and is denoted by \(A^0 \).

\(A^0 \) is open and is the largest open fuzzy set contained in \(A \). The fuzzy set \(A \) is open if and only if \(A = A^0 \) (see [14]). Closure of \(A \) is the meet of all the closed subsets containing \(A \) and is denoted by \(\overline{A} \) (see [45]).

Definition 1.4.5. [14] Let \(f: \mathcal{F}(X) \to \mathcal{F}(Y) \) be a fuzzy extension of \(f: X \to Y \) and \(f^{-1}: \mathcal{F}(Y) \to \mathcal{F}(X) \) be the inverse of the extension. \(f: (X, \tau) \to (Y, \rho) \) is said to be fuzzy continuous, if for each fuzzy set \(B \in \rho \), then the fuzzy set \(f^{-1}(B) \in \tau \).

Theorem 1.4.6. [14] Let \((X, \tau)\) and \((Y, \rho)\) be fuzzy topological spaces and let \(f \) be a function from \(X \) into \(Y \). Then, \(f \) is fuzzy continuous if and only if \(f^{-1}(C) \) is closed in \(X \), for each closed fuzzy set \(C \) in \(Y \).

Proposition 1.4.7. [14] If \(f: (X, \tau) \to (Y, \rho) \) and \(g: (Y, \rho) \to (Z, \delta) \) are fuzzy continuous, then \(g \circ f: (X, \tau) \to (Z, \delta) \) is fuzzy continuous.

Definition 1.4.8. [14] A family \(\mathcal{U} \) of fuzzy sets is a cover of a fuzzy set \(A \) if and only if \(A \subseteq \bigcup \{U: U \in \mathcal{U}\} \). It is an open cover if and only if each member of \(\mathcal{U} \) is an open fuzzy set. A subfamily of \(\mathcal{U} \) is called a subcover of \(A \), if it is an open cover of \(A \).

Definition 1.4.9. [14] A fuzzy topological space \((X, \tau)\) is compact if and only if each open cover has a finite subcover.

Proposition 1.4.10. [14][45] Let \((X, \tau)\) is compact and \(f \) a fuzzy continuous mapping from \((X, \tau)\) onto \((Y, \rho)\), then \((Y, \rho)\) is compact.
1.5 Fuzzy Algebra

Fuzzy approach to algebraic concepts started with Rosenfeld’s [71] paper on fuzzy groups. That paper led to extensive study of fuzzy subsystems of various algebraic structures. Das [17] studied the inter-relationship between the fuzzy subgroup and its α-level subsets. Fuzzy normal subgroups were studied by Liu [44], Wu [93], and Mukherjee and Bhattacharya [57]. In this section we review some definitions and results in that theory of fuzzy algebra.

1.5.1 Fuzzy Subgroups

Definition 1.5.1. [71] A fuzzy set A of a group G is called a fuzzy subgroup of G if

1. $\min\{A(x), A(y)\} \leq A(xy)$, and
2. $A(x^{-1}) \leq A(x), \forall x, y \in G$.

Combine the two conditions we can write $\min\{A(x), A(y)\} \leq A(xy^{-1}), \forall x, y \in G$. It follows immediately from this definition that $A(x) \leq A(e)$ and $A(x^{-1}) = A(x), \forall x, y \in G$, where e is the identity element of G. A fuzzy subset A of a group G is called a fuzzy sub-groupoid of G, if $\min\{A(x), A(y)\} \leq A(xy), \forall x, y \in G$.

Proposition 1.5.2. [71] If $\{A_i : i \in I\}$ is a family of fuzzy subgroups of a group G, then $\bigcap A_i$ is a fuzzy subgroup of G. But the union of two fuzzy subgroups of G need not be a fuzzy subgroup of G.

A fuzzy set A in X is said to have the sup property if, for any subset $S \subseteq X$, there exists $s_0 \in S$ such that $A(s_0) = \sup_{s \in S} A(s)$.

Proposition 1.5.3. (See [71]) Let G_1 and G_2 be groups, f be a group homomorphism from G_1 into G_2.
• Let A be a fuzzy subgroup in G_1 that has the sup property. Then $f(A)$ is a fuzzy subgroup of G_2;

• Let B be a fuzzy subgroup in G_2. Then $f^{-1}(B)$ is a fuzzy subgroup of G_1.

Proposition 1.5.4. [17] If A is a fuzzy subgroup of a group G, then each α-level subset $A_{[\alpha]}$ is subgroup of G, for $\alpha \in [0, 1]$.

Definition 1.5.5. [44, 57, 93] A fuzzy subgroup A of a group G is called a normal fuzzy subgroup if and only if $A(xy) = A(yx), \forall x, y \in G$.

Proposition 1.5.6. [57] If A is a normal fuzzy subgroup of a group G, then each α-level subgroups of A is normal in G, for $\alpha \in [0, 1]$.

Proposition 1.5.7. [2] The intersection $\cap A_i$ of an arbitrary family of normal fuzzy subgroups of a group G is a normal fuzzy subgroup of G.

1.5.2 Lattice Valued Lattices

Definition 1.5.8. [50] Let (M, \vee_M) be a join-semilattice and (L, \wedge_L, \vee_L) be a complete lattice with the least element 0_L and the greatest element 1_L. A mapping $A : M \rightarrow L$ is called an L-fuzzy sub-semilattice (L-fuzzy semilattice) of M if all the p-level sets ($p \in L$) of A are sub-semilattices of M. The set of all L-fuzzy subsets of M is denoted by $\mathcal{F}_L(M)$.

Proposition 1.5.9. [50] Let (M, \vee_M) be a (join) semilattice and (L, \wedge_L, \vee_L) be a complete lattice with the least element 0_L and the greatest element 1_L. $A \in \mathcal{F}_L(M)$ is an L-fuzzy sub-semilattice of M if and only if

$$A(x) \wedge_L A(y) \leq A(x \vee_M y), \forall x, y \in M.$$

Definition 1.5.10. [81] Let (M, \wedge_M, \vee_M) be a lattice and L be a complete lattice with the least element 0_L and the greatest element 1_L. The mapping $A : M \rightarrow L$ is
called a lattice-valued fuzzy lattice (L-fuzzy lattice) if all the p-level sets ($p \in L$) of A are sublattices of M.

Proposition 1.5.11. [81] Let $A : M \to L$ be an L-fuzzy lattice, and let $p, q \in L$. If $p \leq q$, then the q-level set

$$A_q = \{ x \in M : q \leq A(x) \}$$

is a sublattice of the p-level set

$$A_p = \{ x \in M : p \leq A(x) \}.$$

Proposition 1.5.12. [81] Let (M, \land_M, \lor_M) be a lattice and (L, \land_L, \lor_L) a complete lattice with 0_L and 1_L. Then the mapping $A : M \to L$ is an L-fuzzy lattice if and only if both of the following relations hold for all $x, y \in M$:

1. $A(x) \land_L A(y) \leq A(x \land_M y)$;
2. $A(x) \land_L A(y) \leq A(x \lor_M y)$.

1.6 Fuzzy Logic

In a classical logic system, every proposition is either true or false. That is, truth value are either 0 or 1. The classical two-valued logic can be extended into three-valued logic in various ways. A logic system having three or more truth values is called many valued logic. Formal many-valued logics, which form the basis for formal logic, were first studied by the Polish mathematician Lukasiewicz [46] in 1920. He developed a series of many-valued logical systems, from three valued to infinite-valued. Later Goguen [28] connected fuzzy sets with many-valued logic and proposed a formal fuzzy logic system. In 1998 Hájek [29] introduced an axiomatic system (Basic logic) for fuzzy logic and found out the common features of various fuzzy logics. Lukasiewicz
logic, Gödel logic (see [29]) and product logic (see [29]) are basic logics and all these
logics generalize syntax of classical logic only in adding a new connective called strong
conjunction (denoted by &).

1.6.1 Basic Logic

The basic logic BL [29] was introduced by Hájek as a family of logics including
Łukasiewicz logic, Gödel logic, Product logic etc. It has two basic binary connectives
→, & and the truth constant 0 (nullary connective). Other connectives are defined
as follows:

\[\neg \phi \text{ is } \phi \rightarrow 0; \]
\[\phi \land \psi \text{ is } \phi \& (\phi \rightarrow \psi); \]
\[\phi \lor \psi \text{ is } ((\phi \rightarrow \psi) \rightarrow \psi) \land ((\psi \rightarrow \phi) \rightarrow \phi); \]
\[\phi \equiv \psi \text{ is } (\phi \rightarrow \psi) \& (\psi \rightarrow \phi); \]
\[\neg 0 \text{ is } \neg 0. \]

An evaluation of a propositional variable or a formula is a mapping \(e \) assigning a truth
value \(e(\phi) \in [0, 1] \) for each propositional variable (or formula) \(\phi \), with the conditions:

\[e(0) = 0; \]
\[e(\phi \rightarrow \psi) = e(\phi) \Rightarrow e(\psi); \]
\[e(\phi \& \psi) = e(\phi) \otimes e(\psi). \]

Definition 1.6.1. [29] The basic logic BL is axiomatized by the inference rule
modus ponens (MP) and the following axioms:

(A1) \((\phi \rightarrow \psi) \rightarrow ((\psi \rightarrow \chi) \rightarrow (\phi \rightarrow \chi));\)

(A2) \((\phi \& \psi) \rightarrow \phi;\)

(A3) \((\phi \& \psi) \rightarrow (\psi \& \phi);\)
(A4) \((\phi \& (\phi \to \psi)) \to (\psi \& (\psi \to \phi))\);

(A5a) \((\phi \to (\psi \to \chi)) \to ((\phi \& \psi) \to \chi)\);

(A5b) \(((\phi \& \psi) \to \chi) \to (\phi \to (\psi \to \chi))\);

(A6) \(((\phi \to \psi) \to \chi) \to (((\psi \to \phi) \to \chi) \to \chi)\);

(A7) \(\overline{0} \to \phi\).

1.6.2 Łukasiewicz Logic

Definition 1.6.2. \([46,47]\) Łukasiewicz logic \(L\) is defined by the following axioms:

(L1) \(\phi \to (\psi \to \phi)\);

(L2) \((\phi \to \psi) \to ((\psi \to \chi) \to (\phi \to \chi))\);

(L3) \((\neg \phi \to \neg \psi) \to (\psi \to \phi)\);

(L4) \(((\phi \to \psi) \to \psi) \to (((\psi \to \phi) \to \phi)\),

and the deduction rule modus ponens, (that is, \(\phi\) and \(\phi \to \psi\) deduce \(\psi\)).

Remark 1.6.3. \([29]\) Łukasiewicz logic is an involutive (ie. \(\neg \neg \phi = \phi\)) Basic Logic. In Łukasiewicz logic, it has one and only one basic connective \(\to\) and has a truth constant 0. The negation and strong conjunction are defined as \(\neg \phi\) is \(\phi \to \overline{0}\) and \(\phi \& \psi\) is \(\neg (\phi \to \neg \psi)\).

1.6.3 Gödel Logic

Definition 1.6.4. \([23,29]\) Godel Logic \(G\) is a Basic Logic BL satisfying the condition:

(G) \(\phi \to (\phi \& \phi)\).
Remark 1.6.5. \[29\] In the Godel Logic \((\phi \land \phi) \equiv (\phi \& \phi)\) (ie. Godel logic interpreting \& as infimum \&). Axiom A2 (ie. \((\phi \& \psi) \rightarrow \phi\)) and axiom G (ie. \(\phi \rightarrow (\phi \& \phi)\)) together implies \& is idempotent. In the Godel logic we can replace axiom A4 as

\[
(\phi \land (\phi \rightarrow \psi)) \rightarrow (\psi \land (\psi \rightarrow \phi)).
\]

Also we have the identity

\[
(\phi \land \psi) \equiv (\phi \land (\phi \rightarrow \psi)).
\]

1.6.4 Product Logic

Definition 1.6.6. \[29\] Product Logic \(\Pi\) is a Basic Logic BL satisfying the conditions:

\((\Pi_1) \neg \neg \chi \rightarrow ((\phi \odot \chi \rightarrow \psi \odot \chi) \rightarrow (\phi \rightarrow \psi));\)

\((\Pi_2) \phi \land \neg \phi \rightarrow 0,\) where \(\odot\) is the product conjunction.

1.6.5 Algebras of Logic

Definition 1.6.7. \[20, 29\] A residuated lattice is a structure \((L, \land, \lor, \otimes, \Rightarrow, 0, 1)\) satisfying the following axioms:

(a) \((L, \land, \lor, 0, 1)\) is a bounded lattice;

(b) \((L, \otimes, 1)\) is a commutative semigroup with unit element 1;

(c) \((\otimes, \Rightarrow)\) is an adjoint pair, that is,

\[
z \leq (x \Rightarrow y) \text{ if and only if } x \otimes z \leq y, \text{ for all } x, y, z \in L \text{ (residuation).}
\]

An MTL-algebra \[24, 25, 29, 108\] is a residuated lattice \(L\) satisfying the equation:

(d) \((x \Rightarrow y) \lor (y \Rightarrow x) = 1, \) for all \(x, y \in L\) (pre-linearity).

A BL-algebra \[29\] is an MTL-algebra \(L\) satisfying the equation:

(e) \((x \land y) = x \otimes (x \Rightarrow y), \) for all \(x, y \in L\) (divisibility).
An MV-algebra \[12, 13\] is a BL-algebra in which the negation is an involution, that is,

\((f1)\) \((x \Rightarrow 0) \Rightarrow 0 = x\), for all \(x \in L\), or equivalently,

\((f2)\) \((x \Rightarrow y) \Rightarrow y = (y \Rightarrow x) \Rightarrow x\), for all \(x, y \in L\).

An IMTL-algebra is an MTL-algebra \(L\) satisfying the equation:

\((g)\) \((x \Rightarrow 0) \Rightarrow 0 = x\), for all \(x \in L\) (regularity).

An NM-algebra is an IMTL-algebra \(L\) satisfying the equation:

\((h)\) \(((x \otimes y) \Rightarrow 0) \lor ((x \land y) \Rightarrow (x \otimes y)) = 1\), for all \(x, y \in L\).

A Boolean algebra \[29, 98\] is a bounded distributive lattice \((L, \land, \lor, 0, 1)\) with a unary operation ‘ satisfying the equations:

\((i)\) \(x \lor x' = 1\);

\((j)\) \(x \land x' = 0\), for all \(x \in L\).

A Heyting algebra is a residuated lattice \(L\) satisfying the equation:

\((k)\) \(x \otimes x = x\), or equivalently \(x \otimes y = x \land y\), for all \(x, y \in L\).

Pavelka \[61\] and Turunen \[84, 85\] studied various algebraic structures of residuated lattice.

Lemma 1.6.8. \[29\] If \((L, \land, \lor, \otimes, \Rightarrow, 0, 1)\) is a BL-algebra, then for every \(x, y, z \in L\):

1. \(x \otimes (x \Rightarrow y) \leq y\) and \(x \leq (y \Rightarrow (x \otimes y))\);

2. if \(x \leq y\), then :

 (a) \((x \otimes z) \leq (y \otimes z)\),

 (b) \((z \Rightarrow x) \leq (z \Rightarrow y)\),
\((c) \ (y \Rightarrow z) \leq (x \Rightarrow z); \)

3. \(x \leq y \) if and only if \(x \Rightarrow y = 1; \)

4. \((x \lor y) \otimes z = (x \otimes z) \lor (y \otimes z); \)

5. \(x \lor y = ((x \Rightarrow y) \Rightarrow y) \land ((y \Rightarrow x) \Rightarrow x). \)

1.7 Rough Sets

A binary relation \(R \) on a set \(X \) is called an equivalence relation if it is reflexive, symmetric and transitive. For an \(x \in X \), an equivalence class \([x]_R \) consists of all elements \(y \in Y \) such that \(xRy \). An equivalence relation induces a partitioning of the universe. Using such partitions one can approximate subsets of the universe whenever the information is vague. In the early 1980’s, Pawlak [62, 63] developed a set theory in this way and he called such sets as rough sets.

Definition 1.7.1. (See [38]) Let \(X \) be the universal set, \(R \) be an equivalence relation on \(X \), \(X/R \) be the family of all equivalence classes induced on \(X \) by \(R \) and \([x]_R \) be the equivalence class in \(X/R \) containing \(x \) in \(X \). The lower approximation of a crisp subset \(A \) of \(X \) is defined by

\[
R(A) = \bigcup \{ [x]_R : [x]_R \subseteq A, x \in X \}
\]

and the upper approximation of \(A \) is defined by

\[
\overline{R}(A) = \bigcup \{ [x]_R : [x]_R \cap A \neq \emptyset, x \in X \}.
\]

The pair \((X, R)\) is called an approximation space and \(R(A) = (R(A), \overline{R}(A)) \) is called the rough set representation of \(A \).
1.7. ROUGH SETS

Note 1.7.2. The upper and lower approximations can also be written as

\[R(A) = \{ x \in X : [x]_R \subseteq A \} \quad \text{and} \quad \overline{R}(A) = \{ x \in X : [x]_R \cap A \neq \emptyset \}. \]

The set difference \(\overline{R}(A) - R(A) \) denotes the rough description of the boundary of \(A \). Vaguely speaking, a set is said to be rough if its boundary region is non-empty, otherwise the set is crisp. Accuracy of approximation \(\alpha_R(X) = \frac{|R(A)|}{|\overline{R}(A)|} \), where \(|A| \) denotes the cardinality of \(A \). Note that, \(0 \leq \alpha_R(A) \leq 1 \). If \(\alpha_R(A) = 1 \), then \(R(A) \) is crisp and if \(\alpha_R(A) < 1 \), then \(R(A) \) is rough with respect to \(R \).

Theorem 1.7.3. Let \(X \) be the universe and \(R \) be an equivalence relation on \(X \). For every multi-fuzzy sets \(A, B \in X \), the rough approximation operators \(R \) and \(\overline{R} \) possess the following properties:

1. \(R(X) = X = \overline{R}(X) \);
2. \(R(\emptyset) = \emptyset = \overline{R}(\emptyset) \);
3. \(R(A) \subseteq A \subseteq \overline{R}(A) \);
4. \(R(A \cap B) = R(A) \cap R(B) \);
5. \(\overline{R}(A \cup B) = \overline{R}(A) \cup \overline{R}(B) \);
6. \(R(A) \cup R(B) \subseteq R(A \cup B) \);
7. \(\overline{R}(A \cap B) \subseteq \overline{R}(A) \cap \overline{R}(B) \);
8. \(A \subseteq B \) implies \(R(A) \subseteq R(B) \) and \(\overline{R}(A) \subseteq \overline{R}(B) \).