List of Plates
(Note: Plates are attached at the end of each chapter)

Chapter 4

Plate 4.1: Lithologs of sections studied in the Mahi (first page) and Sabaramati (second page) basins.

Plate 4.2: Internally stratified silty sand block lining the base of the conglomerate sheet at Rayka (Mahi basin). Scale is 1 m long. Note the vertical orientation of the stratification.

Plate 4.3: Irregular clast morphology of calcretes at Rayka (Mahi basin). Camera lens cap is 5.5 cm in diameter.

Plate 4.4: Juxtaposition of Gtb facies over the underlying Gtd facies. Gtb foreset beds are only several grain thickes while Gtd foreset beds are much thicker. Diameter of the lens cap is 5.5 cm. Location = Rayka, Mahi basin.

Plate 4.5: Gravel troughs of 3D dune origin. Location = Rayka, Mahi basin.

Plate 4.6: Planar cross-stratified gravel facies at Poicha, Mahi basin. Scale is 1 m long.

Plate 4.7: Horizontally stratified silty sands associated with the conglomerate facies. Unit in the foreground is 2 m thick. (Location = Rayka, Mahi basin).

Plate 4.8: Sh facies of sheetflood origin. Note the continuous extent of horizontal parallel stratification in the sediments above the author. (Height of the author is 1.56 m). Location is Hirpura, Sabarmati basin.

Plate 4.9: Sim facies (massive silts) seen capping deposits of sheetflood origin (Sh facies) at the top of the section. Thickness of red horizon at the left end of the photograph is 3 m (Location = Dabka, Mahi basin).

Plate 4.10: Massive silts (Sim) forming characteristic vertical bluffs due to absence of internal stratification at Mahudi, Sabarmati basin. Bluff of the right is 7 m thick.

Chapter 5

Plate 5.1: Lithologs of sections studied in the Mahi (first page) and Sabaramati (second page) basins showing calcrete types and its distribution.

Plate 5.2: Pseudo-anticlines developed in vertisol at Rayka (Mahi basin) due to the intersection of oppositely directed curvi-planes. Scale is 0.5 m.

Plate 5.3: Close-up view of pedogenic slickensides formed along the surface of a parallelepiped in a vertisol. Location = Mahudi, Sabarmati basin. Diameter of coin is 2.5 cm.
Plate 5.4: Vertisol at Rayka, Mahi basin, showing development of peds, carbonate impregnated fissures and large calcrite nodules disseminated throughout the profile. Length of marker is 8 cm.

Plate 5.5: Red-bed at Dabka (Mahi basin) seen nearly bisecting the section. Thickness of red-bed is 3.5 m.

Plate 5.6: Red-bed of pedogenic origin at Hirpura (Sabarmati basin). Note the loss in reddening towards the base which is associated with a concomitant loss in clay content also. Length of hammer is 32 cm.

Plate 5.7: Cross-stratification within the red-bed suggesting the derived nature of the rubified sediment. Length of hammer is 32 cm. Location = Waghpur, Sabarmati basin.

Plate 5.8: Section of vertisol nodules showing a 'ped' nucleus of varying dimensions with respect to the outer carbonate shell. Diameter of coin is 2.3 cm.

Plate 5.9: Decimetre size disorthic calcrite nodules in the vertisol at Rayka, Mahi basin. Diameter of the lens cap is 5.5 cm.

Plate 5.10: Disorthic calcrite nodules associated with a pedogenic red-bed forming a broad band about 0.5 m thick. Scale is 0.5 m. Location = Dabka, Mahi basin.

Plate 5.11: Polished section of vertic calcrite nodule from the basal vertisol at Mahudi, Sabarmati basin. Note the intense network of spar filled veins seen traversing the nodule. Diameter of coin is 2.3 cm.

Plate 5.12: Groundwater calcrite sheets seen following stratification planes of a channel-fill sand body at Rayka, Mahi basin. Height of figure is 1.55 cm.

Plate 5.13: Discontinuous groundwater calcrites seen developed along stratification planes within Sh facies. Diameter of lens cap is 5.5 cm. (Location = Rayka, Mahi basin).

Plate 5.14: Field photograph of cauliflower calcrites. Note the density of calcrites within the host sediment and the size. Length of the hammer is 32 cm.

Plate 5.15: Polished section of a cauliflower calcrite showing clay and spar filled shrinkage planes traversing the micritic nodule. Diameter of coin is cm. (Location = Mahudi, Sabarmati basin).

Plate 5.16: Rhizoliths from vertic soils from Rayka, Mahi basin. Scale is in centimetres.

Plate 5.17: Rhizogenic calcrites from pedogenic red-bed at Dabka, Mahi basin. Note that in comparison to the rhizoliths from vertic soils these are smaller in dimensions and are 'agglutinated'. Scale is in centimetres.

Plate 5.18: Photomicrograph of clotted micrite. Sample is of a vertic pedogenic calcrite (Mahudi, Sabarmati basin). Bar = 50 μm.
Plate 5.19: Photomicrograph of radial grain coat of needle calcite on quartz clasts floating in a micritic groundmass. Sample is of cauliflower calcrete from Mahudi, Sabarmati basin. Bar = 50 \(\mu m \).

Plate 5.20: Sparitic growth from the pore-wall towards the quartz grain mimicking grain coat fabrics. Note the increase in calcite crystal size towards the grain. Sample is of cauliflower calcrete, Mahudi, Sabarmati basin. Bar = 50 \(\mu m \).

Plate 5.21: Photomicrograph of calcite veins traversing the micritic groundmass. These veins might probably be relics of root channels that were later infilled by microspar. Bar = 50 \(\mu m \). Sample is of vertic calcrete, Mahudi, Sabarmati basin.

Plate 5.22: Corroded margin of quartz clast due to initial dissolution during the interaction of meteoric waters with the grain. Note the outwardly directed 'c' shaped pits. Bar = 50 \(\mu m \). Sample is of cauliflower calcrete, Mahudi, Sabarmati basin.

Plate 5.23: Exploding microcline grain due to the displacive growth of calcite. Crossed nicols, bar = 50 \(\mu m \). Sample is of cauliflower calcrete, Mahudi, Sabarmati basin.

Plate 5.24: Pedogenesis of groundwater calcretes showing relics preserved within a soil profile, before complete redistribution of the carbonate. Length of hammer is 28 cm. Location = Rayka, Mahi basin.

Plate 5.25: Close-up of disruption of groundwater calcrete sheets during pedogenesis leading to the development of smaller nodules. Upper part of the scale is in millimetres. Location = Rayka, Mahi basin.