CONTENTS

DECLARATION
CERTIFICATE
ACKNOWLEDGEMENTS ... 1
ABSTRACT ... 1
1 INTRODUCTION .. 6
 1.1 WHY RUBBER WOOD? .. 7
 1.2 NATURE OF THE PROBLEM 9
 1.2.1 Biodegradation 10
 1.2.2 Natural durability 10
 1.3 OBJECTIVES OF THE STUDY 11

2 REVIEW OF LITERATURE 13
 2.1 BIODEGRADATION .. 14
 2.2 PROPHYLACTIC TREATMENTS 16
 2.3 SAPSTAIN CONTROL .. 17
 2.4 BORON DIFFUSION TREATMENT 19
 2.5 VACUUM-PRESSURE IMPREGNATION (VPI)
 TREATMENT .. 22
 2.5.1 Boron impregnation treatment 22
 2.5.2 CCA impregnation treatment 24
 2.5.3 Impregnation treatment with other chemicals 25
 2.6 METHOD OF STORAGE 26
 2.7 CHEMICAL MODIFICATION 27
 2.7.1 Acetylation ... 27
 2.7.2 Acetylation procedures 28
 2.7.3 Biological resistance 29
 2.7.4 Dimensional stabilization 30
 2.7.5 Physical and mechanical properties 30
 2.7.6 Weathering properties 32
 2.7.7 Acetylation of rubber wood 32

3 MATERIALS AND METHODS 34
 3.1 BORON DIFFUSION TREATMENT 34
3.1.1 Effect of diffusion storage period
3.1.2 Effect of surface area per unit volume
3.1.3 Effect of dipping duration
3.1.4 Variation of solution pick-up with concentration

3.2 VACUUM-PRESSURE IMPREGNATION (VPI) TREATMENT
3.2.1 Treatment with boron chemicals
3.2.1.1 Lateral penetration
3.2.2 Treatment with CCA preservative
3.2.3 Determination of penetration of preservatives
3.2.3.1 Penetration of boron
3.2.3.2 Penetration of CCA
3.2.4 Chemical analysis of treated wood
3.2.4.1 Analysis for boron
3.2.4.2 Analysis for CCA
3.2.5 Full scale testing in commercial plants
3.2.5.1 Treatment with boron compounds
3.2.5.2 Treatment with CCA preservative

3.3 DETERMINATION OF PHYSICAL PROPERTIES
3.3.1 Moisture content
3.3.2 Density

3.4 DETERMINATION OF MECHANICAL PROPERTIES
3.4.1 Fibre stress at limit of proportionality (FSLP)
3.4.2 Modulus of rupture (MOR)
3.4.3 Modulus of elasticity (MOE)
3.4.4 Maximum compressive stress (MCS)

3.5 UNDER-WATER STORAGE
3.5.1 Evaluation of physical and mechanical properties of under-water stored rubber wood
3.5.2 Treatability of under-water stored rubber wood

3.6 CHEMICAL MODIFICATION OF RUBBER WOOD
3.6.1 Acetylation technique
3.6.2 Determination of weight percent gain (WPG) of chemicals
3.6.3 Determination of anti-shrink efficiency (ASE) of acetylated rubber wood
3.6.4 Evaluation of physical and mechanical properties of modified rubber wood .. 50

3.7 PREPARATION OF MEDIUM DENSITY FIBRE (MDF) BOARDS FROM ACETYLATED RUBBER WOOD FIBRES 51

3.7.1 Evaluation of physical and mechanical properties and dimensional stability of MDF boards prepared from acetylated rubber wood fibres .. 51

4 RESULTS AND DISCUSSION ... 53

4.1 SPECIFICATIONS FOR DRY SALT RETENTION (DSR) OF PRESERVATIVES IN TREATED WOOD FOR PERISHABLE TIMBERS .. 53

4.2 BORON DIFFUSION TREATMENT 55

4.2.1 Developing simple diffusion treatment with boron chemicals ... 55

4.2.2 Optimum storage period ... 57

4.2.3 Effect of surface area per unit volume .. 60

4.2.4 Effect of treatment duration .. 61

4.2.5 Variation of solution pick-up with concentration .. 63

4.2.6 Summary of diffusion treatment 65

4.3 VACUUM-PRESSURE IMPREGNATION (VPI) TREATMENT - PILOT PLANT INVESTIGATIONS 65

4.3.1 Boron impregnation treatment .. 66

4.3.1.1 Effect of varying the initial vacuum period 66

4.3.1.2 Effect of varying the pressure period 67

4.3.1.3 Effect of varying moisture levels and concentration of treatment solution 70

4.3.1.4 Effect of length of samples .. 71

4.3.1.5 Effect of end-sealing .. 71

4.3.2 Chemical analysis of boron impregnated rubber wood .. 73

4.3.3 Re-confirmation trial in pilot-plant .. 76

4.3.3.1 Air-dried wood .. 76

4.3.3.2 Partially dried wood .. 77

4.4 FULL SCALE TESTING OF THE ECONOMICAL SCHEDULE IN COMMERCIAL SCALE PLANTS 78

4.4.1 Air-dried wood .. 78

4.4.2 Partially dried wood - Effect of length of sizes .. 79

4.4.3 Green wood .. 82
4.4.4 Effect of a more intensive initial vacuum on DSR 85
4.4.5 Effect of sample size on DSR 86

4.5 CCA IMPREGNATION TREATMENT 89
4.5.1 Pilot-plant trials 89
4.5.1.1 Air-dried wood 89
4.5.1.2 Partially dried wood 92
4.5.2 Full scale testing of CCA impregnation of green rubber wood in commercial scale plants 92
4.5.3 Chemical analysis of CCA treated wood 94
4.5.4 Summary of vacuum-pressure impregnation (VPI) treatment trials 97

4.6 UNDER-WATER STORAGE 98
4.6.1 Optimum storage conditions 98
4.6.2 Effect of under-water storage on physical and mechanical properties 99
4.6.3 Effect of under-water storage on treatability 102
4.6.4 Summary of the effect of under-water storage 107

4.7 CHEMICAL MODIFICATION OF RUBBER WOOD BY ACETYALTION 107
4.7.1 Effect of treatment conditions on acetyl weight percent gain (WPG) 107
4.7.2 Dimensional stability of acetylated rubber wood 109
4.7.3 Effect of acetylation on physical and mechanical properties 110

4.8 PREPARATION OF MEDIUM DENSITY FIBRE (MDF) BOARD FROM ACETYLATED RUBBER WOOD FIBRES 113
4.8.1 Method for acetylating rubber wood fibres and preparation of MDF board 113
4.8.2 Dimensional stability of acetylated MDF board from rubber wood 114
4.8.3 Effect of acetylation on the bending strength of MDF board from rubber wood 115
4.8.4 Summary of the chemical modification of rubber wood 116

5 CONCLUSIONS 117
6 REFERENCES 126
7 PUBLICATIONS