Chapter 2

Fuzzy Graph Structures - Basic Concepts

In this chapter, we introduce the concept of fuzzy graph structures as an extension to that of graph structures of E. Sampathkumar [61] and investigate some of its basic properties.

We introduce concepts like ρ_i-path, ρ_i-connectedness, ρ_i-tree, fuzzy ρ_i-tree, ρ_i-bridge, ρ_i-cutvertex etc. of a fuzzy graph structure analogous to the concepts of path, connectedness tree, bridge, cutvertex etc. of fuzzy graphs discussed in [45] by Mordeson & Nair. Corresponding results are proved and generalised.

2.1 Introduction

In this section, we recall the concept of graph structure and generalise to fuzzy concept.

Definition 2.1.1. [61] $G = (V, R_1, R_2, ..., R_k)$ is a graph structure if V is a nonempty

1Some results of this chapter are included in the papers
3. Fuzzy Graph Structures - a Generalised Approach, Communicated.
set and R_1, R_2, \ldots, R_k are relations on V which are mutually disjoint such that each $R_i, i = 1, 2, 3, \ldots, k,$ is symmetric and irreflexive.

Definition 2.1.2. Let $G = (V, R_1, R_2, \ldots, R_k)$ be a graph structure and $\mu, \rho_1, \rho_2, \ldots, \rho_k$ be fuzzy subsets of V, R_1, R_2, \ldots, R_k respectively such that $\rho_i(x, y) \leq \mu(x) \land \mu(y) \forall x, y \in V$ and $i = 1, 2, \ldots, k$. Then $\tilde{G} = (\mu, \rho_1, \rho_2, \ldots, \rho_k)$ is a fuzzy graph structure of G.

Convention: As is the convention in usual Graph Theory, if $(x_r, x_s), (x_s, x_r) \in R_i$, we consider them as only one R_i-edge and denote it by either (x_r, x_s) or (x_s, x_r).

Definition 2.1.3. Let $\tilde{G} = (\mu, \rho_1, \rho_2, \ldots, \rho_k)$ be a fuzzy graph structure of a graph structure $G = (V, R_1, R_2, \ldots, R_k)$. $\tilde{F} = (\mu, \tau_1, \tau_2, \ldots, \tau_k)$ is a partial fuzzy spanning subgraph structure of $\tilde{G} = (\mu, \rho_1, \rho_2, \ldots, \rho_k)$ if $\tau_r \subseteq \rho_r$ for $r = 1, 2, \ldots, k$.

Example 1

Let $V = \{x_0, x_1, x_2, x_3, x_4, x_5\}$,

$R_1 = \{(x_0, x_1), (x_0, x_2), (x_3, x_4)\}$,

$R_2 = \{(x_1, x_2), (x_4, x_5)\}$,

$R_3 = \{(x_2, x_3)\}$

and then $G = (V, R_1, R_2, R_3)$ is a graph structure. Let $\tilde{G} = (\mu, \rho_1, \rho_2, \rho_3)$ where

$\mu(x_0) = 0.8, \mu(x_1) = 0.9, \mu(x_2) = 0.6, \mu(x_3) = 0.5, \mu(x_4) = 0.6, \mu(x_5) = 0.7$,

$\rho_1(x_0, x_1) = 0.8, \rho_1(x_0, x_2) = 0.5, \rho_1(x_3, x_4) = 0.4$,

$\rho_2(x_1, x_2) = 0.6, \rho_2(x_4, x_5) = 0.5$,

$\rho_3(x_2, x_3) = 0.3, \rho_3(x_0, x_5) = 0.5$

Note: In cases where the ρ_r-values are zeroes, we do not write them explicitly.

Here notice that $\rho_1(x_0, x_1) \leq \mu(x_0) \land \mu(x_1)$ and so on.

Therefore, \tilde{G} is a fuzzy graph structure of G.
Now we move on to define some basic notions of fuzzy graph structures. In all these $i \in \{1, 2, ..., k\}$ and \tilde{G} is the fuzzy graph structure of G as described in Definition 2.1.1.

Convention: Throughout this chapter, unless otherwise specified, G and \tilde{G} represent the graph structure $G = (V, R_1, R_2, ..., R_k)$ and its fuzzy graph structure $\tilde{G} = (\mu, \rho_1, \rho_2, ..., \rho_k)$.

Definition 2.1.4. Let G be a graph structure and \tilde{G} be a fuzzy graph structure of G. If $(x, y) \in \text{supp}(\rho_i)$, then (x, y) is said to be a ρ_i-edge of \tilde{G}.

In Example 1, $(x_1, x_0), (x_0, x_2), (x_3, x_4)$ are ρ_1-edges, $(x_1, x_2), (x_4, x_5)$ are ρ_2-edges and $(x_2, x_3), (x_0, x_5)$ are ρ_3-edges.

Definition 2.1.5. A ρ_i-path of a fuzzy graph structure \tilde{G} is a sequence of vertices, $x_0, x_1, ..., x_n$ which are distinct (except possibly $x_0 = x_n$) such that (x_{j-1}, x_j) is a ρ_i-edge for all $j = 1, 2, ..., n$.

In Example 1, x_1, x_0, x_2 is a ρ_1-path.

Definition 2.1.6. Two vertices of a fuzzy graph structure \tilde{G}, joined by a ρ_i-path are said to be ρ_i-connected.

In Example 1, x_1 and x_2 are ρ_1-connected and x_0 and x_5 are ρ_3-connected.

Definition 2.1.7. The strength of a ρ_i-path $x_0, x_1, ..., x_n$ of a fuzzy graph structure \tilde{G} is $\bigwedge_{j=1}^{n} \rho_i(x_{j-1}, x_j)$ for $i = 1, 2, ..., k$.

In Example 1, strength of the ρ_1-path x_1, x_0, x_2 is 0.5.
Definition 2.1.8. In any fuzzy graph structure \(\tilde{G} \),

\[\rho_i^2(x, y) = \rho_i \circ \rho_i(x, y) = \bigvee_z \{ \rho_i(x, z) \wedge \rho_i(z, y) \} \]

and \(\rho_i^j(x, y) = (\rho_i^{j-1} \circ \rho_i)(x, y), j = 2, 3, ..., m \) for any \(m \geq 2 \). Also

\[\rho_i^\infty(x, y) = \bigvee \{ \rho_i^j(x, y) : j = 1, 2, ... \} \]

We recall the concept of \(R_i \)-cycle introduced by Sampathkumar [61].

Definition 2.1.9. [61] An \(R_i \)-cycle is an alternating sequence of vertices and edges

\(v_0, e_1, v_1, e_2, ..., v_{n-1}, e_n, v_n = v_0 \) consisting only of \(R_i \)-edges.

In the fuzzy context, we define the following analogue.

Definition 2.1.10. \(\tilde{G} \) is a \(\rho_i \)-cycle iff \((\text{supp}(\mu), \text{supp}(\rho_1), \text{supp}(\rho_2), ..., \text{supp}(\rho_k)) \) is an \(R_i \)-cycle.

Example 2

Let \(V = \{x_0, x_1, x_2, x_3, x_4, x_5, x_6, x_7\} \),

\(R_1 = \{(x_0, x_1), (x_1, x_2), (x_2, x_3), (x_0, x_3)\} \), \(R_2 = \{(x_0, x_4)\} \),

\(R_3 = \{(x_3, x_4), (x_4, x_5), (x_5, x_0), (x_6, x_7)\} \) and \(G = (V, R_1, R_2, R_3) \) be a graph structure.

Let \(\tilde{G} = (\mu, \rho_1, \rho_2, \rho_3) \) where \(\mu(x_0) = 0.8, \mu(x_1) = 0.9, \mu(x_2) = 0.6, \mu(x_3) = 0.5, \)

\(\mu(x_4) = 0.6, \mu(x_5) = 0.7, \mu(x_6) = 0.6, \mu(x_7) = 0.5 \)

\(\rho_1(x_0, x_1) = 0.8, \rho_1(x_1, x_2) = 0.5, \rho_1(x_2, x_3) = 0.5, \rho_1(x_0, x_3) = 0.5, \)

\(\rho_2(x_0, x_4) = 0.6, \)

\(\rho_3(x_3, x_4) = 0.5, \rho_3(x_4, x_5) = 0.6, \rho_3(x_5, x_0) = 0.4, \rho_3(x_6, x_7) = 0.5 \)

In Example 2, \((x_0, x_1), (x_1, x_2), (x_2, x_3), (x_0, x_3) \) is a \(\rho_1 \)-cycle.

Definition 2.1.11. \(\tilde{G} \) is a fuzzy \(\rho_i \)-cycle iff \((\text{supp}(\mu), \text{supp}(\rho_1), \text{supp}(\rho_2), ..., \text{supp}(\rho_k)) \)
is an R_i-cycle and there exists no unique (x, y) in $\text{supp}(\rho_i)$ such that
\[\rho_i(x, y) = \wedge \{ \rho_i(u, v) | (u, v) \in \text{supp}(\rho_i) \}. \]

In Example 2, $(x_0, x_1), (x_1, x_2), (x_2, x_3), (x_0, x_3)$ is a fuzzy ρ_1-cycle.

Note: Sampathkumar has defined a graph structure to be an R_i-tree if the subgraph structure induced by R_i-edges is a tree. R_i-forest is defined similarly as follows.

Definition 2.1.12. A graph structure is an R_i-forest if the subgraph structure induced by R_i-edges is a forest, i.e., if it has no R_i-cycles.

Definition 2.1.13. \tilde{G} is a ρ_i-forest if its ρ_i-edges form an R_i-forest.

In Example 2, $(x_3, x_4), (x_4, x_5), (x_5, x_0), (x_6, x_7)$ is a ρ_3-forest.

Definition 2.1.14. \tilde{G} is ρ_i-connected if there is a ρ_i-path joining every pair of vertices. Also \tilde{G} is a ρ_i-tree if it is a ρ_i-connected ρ_i-forest.

In Example 2, $(x_3, x_4), (x_4, x_5), (x_5, x_0)$ is a ρ_2-tree.

Definition 2.1.15. \tilde{G} is a fuzzy ρ_i-forest if it has a partial fuzzy spanning subgraph structure $\tilde{F}_i = (\mu, \tau_1, \tau_2, \ldots, \tau_k)$ which is a τ_i-forest where for all ρ_i-edges not in \tilde{F}_i, $\rho_i(x, y) < \tau_i^\infty(x, y)$.

Definition 2.1.16. \tilde{G} is a fuzzy ρ_i-tree if it has a partial fuzzy spanning subgraph structure $\tilde{F}_i = (\mu, \tau_1, \tau_2, \ldots, \tau_k)$ which is a τ_i-tree where for all ρ_i-edges not in \tilde{F}_i, $\rho_i(x, y) < \tau_i^\infty(x, y)$.

Example 3

Let $V = \{x_0, x_1, x_2, x_3, x_4, x_5\}$,

$R_1 = \{(x_0, x_1), (x_1, x_2), (x_2, x_3), (x_3, x_0), (x_4, x_5)\}$, $R_2 = \{(x_0, x_4)\}$ and $G = (V, R_1, R_2)$
be a graph structure. Let \(\tilde{G} = (\mu, \rho_1, \rho_2) \) where \(\mu(x_0) = 0.5, \mu(x_1) = 0.6, \mu(x_2) = 0.7, \mu(x_3) = 0.8, \mu(x_4) = 0.9, \mu(x_5) = 0.8 \)

\[
\begin{align*}
\rho_1(x_0, x_1) &= 0.4, \rho_1(x_1, x_2) = 0.5, \rho_1(x_2, x_3) = 0.6, \rho_1(x_0, x_3) = 0.3, \rho_1(x_4, x_5) = 0.8, \\
\rho_2(x_0, x_4) &= 0.5
\end{align*}
\]

\(\tilde{G} \) is a fuzzy graph structure of \(G \). Let \(\tilde{F}_1 = (\mu, \tau_1, \tau_2) \) be a partial fuzzy spanning subgraph structure of \(\tilde{G} \) defined by

\[
\begin{align*}
\tau_1(x_0, x_1) &= 0.4, \tau_1(x_1, x_2) = 0.5, \tau_1(x_2, x_3) = 0.6, \tau_1(x_4, x_5) = 0.8, \\
\tau_2(x_0, x_4) &= 0.5
\end{align*}
\]

and \(\tau_1 = 0, \tau_2 = 0 \) for all other \(\rho_1 \) and \(\rho_2 \) edges. Then \(\tilde{F}_1 = (\mu, \tau_1, \tau_2) \) is a \(\tau_1 \)-forest with \(\rho_1(x, y) < \tau_1^\infty(x, y) \)

for all \(\rho_1 \)-edges not in \(\tilde{F}_1 \). Hence \(\tilde{G} \) is a fuzzy \(\rho_1 \)-forest.

In the above example, \((x_0, x_1), (x_1, x_2), (x_2, x_3)\) form a fuzzy \(\rho_1 \)-tree.

2.2 Some results on fuzzy \(\rho_i \)-trees and fuzzy \(\rho_i \)-forests

We use the definitions in the previous section to prove certain results on fuzzy \(\rho_i \)-forests and fuzzy \(\rho_i \)-trees (Here \(i \) can be any element in \(\{1, 2, ..., k\} \)).

Theorem 2.2.1. \(\tilde{G} \) is a fuzzy \(\rho_i \)-forest iff in any \(\rho_i \)-cycle, there exists a \(\rho_i \)-edge

\((x, y) \) such that \(\rho_i(x, y) < \rho_i^\infty(x, y) \) where \((\mu, \rho_1', \rho_2', ..., \rho_k') \) is the partial fuzzy spanning subgraph structure obtained by deleting \((x, y) \) from \(\tilde{G} \).

Proof. Let \(\tilde{G} \) have the property that in any \(\rho_i \)-cycle, there exists \((x, y) \) such that

\(\rho_i(x, y) < \rho_i^\infty(x, y) \).
If \tilde{G} does not contain any ρ_i-cycle, then it is a fuzzy ρ_i-forest and there is nothing to prove.

Let \tilde{G} contain a ρ_i-cycle. Consider a ρ_i-edge (x, y) of that ρ_i-cycle with $\rho_i(x, y) < \rho_i^\infty(x, y)$ in such a way that $\rho_i(x, y)$ is the smallest among all ρ_i-edges of that ρ_i-cycle and having the above property.

Remove the ρ_i-edge (x, y). The resultant fuzzy graph structure still may contain ρ_i-cycles which can be removed by repetition of the above process.

It may be noted that the strength of deleted ρ_i-edges in a ρ_i-cycle increases in each step. When the fuzzy graph structure is cleared of all ρ_i-cycles, the resultant partial fuzzy spanning subgraph structure is a ρ_i-forest, say \tilde{F}_i.

If $(x, y) \notin \tilde{F}_i$, (x, y) was deleted. So there exists a ρ_i-path from x to y stronger than (x, y). Even if some of its ρ_i-edges were deleted, there will be stronger ρ_i-paths for diverting around.

Repeating the process, we get a ρ_i-path consisting only of ρ_i-edges of \tilde{F}_i.

Therefore \tilde{G} is a fuzzy ρ_i-forest.

Conversely, let \tilde{G} be a fuzzy ρ_i-forest.

Consider a ρ_i-cycle C_i of \tilde{G}. Some ρ_i-edge (x, y) of C_i is not in the partial fuzzy spanning subgraph structure $\tilde{F}_i = (\mu, \tau_1, \tau_2, ..., \tau_k)$ which is a τ_i-forest and $\rho_i(x, y) < \tau_i^\infty(x, y)$.

But $\tau_i^\infty(x, y) < \rho_i^\infty(x, y)$ where $(\mu, \rho_i', \rho_2', ..., \rho_k')$ is the partial fuzzy spanning subgraph structure obtained by deleting (x, y) from \tilde{G} since (x, y) is not in \tilde{F}_i.

Therefore $\rho_i(x, y) < \rho_i^\infty(x, y)$.

\begin{Theorem} \label{thm:2.2.2}
Let \tilde{G} be a fuzzy graph structure. If there is at most one strongest ρ_i-path between any two vertices, then \tilde{G} must be a fuzzy ρ_i-forest.
\end{Theorem}
Proof. Suppose there exists at most one strongest ρ_i-path between any two vertices of \tilde{G}.

If possible, let \tilde{G} be not a fuzzy ρ_i-forest. Then there exists a ρ_i-cycle, say C_i, in \tilde{G} such that $\rho_i(x, y) \geq \rho'_i(x, y) \forall (x, y)$ in C_i where $(\mu, \rho'_1, \rho'_2, \ldots, \rho'_k)$ is a partial fuzzy spanning subgraph structure obtained by the deletion of (x, y) by Theorem 2.2.1. ie., (x, y) is the strongest ρ_i-path from x to y.

Strength of a ρ_i-path is the strength of the weakest ρ_i-edge of that ρ_i-path. Thus (x, y) cannot be a weakest ρ_i-edge of C_i since in that case the remaining ρ_i-edges of C_i form a strongest ρ_i-path which is a contradiction to our assumption.

Therefore \tilde{G} is a fuzzy ρ_i-forest.

\begin{proof}

Let \tilde{G} be a fuzzy ρ_i-tree and $\tilde{G}^* = (\text{supp}(\mu), \text{supp}(\rho_1), \text{supp}(\rho_2), \ldots, \text{supp}(\rho_k))$ be not a ρ_i-tree. Then there exists at least one ρ_i-edge (u, v) in $\text{supp}(\rho_i)$ for which $\rho_i(u, v) < \rho_i^\infty(u, v)$.

Let \tilde{G} be a fuzzy ρ_i-tree. Then there exists a partial fuzzy spanning subgraph structure $\tilde{F}_i = (\mu, \tau_1, \tau_2, \ldots, \tau_k)$ which is a τ_i-tree and $\rho_i(u, v) < \tau_i^\infty(u, v)$ for all (u, v) not in \tilde{F}_i.

Clearly $\tau_i^\infty(u, v) \leq \rho_i^\infty(u, v)$. Therefore $\rho_i(u, v) < \rho_i^\infty(u, v) \forall (u, v)$ not in \tilde{F}_i.

\tilde{G} is a fuzzy ρ_i-tree and \tilde{G}^* is not a ρ_i-tree. Hence there exists at least one ρ_i-edge (u, v) not in \tilde{F}_i. ie., there exists at least one ρ_i-edge (u, v) in $\text{supp}(\rho_i)$ with $\rho_i(u, v) < \rho_i^\infty(u, v)$.

Now we move on to prove a lemma on a special type of fuzzy graph structures.

\begin{lemma}

Let \tilde{G} be a fuzzy graph structure with $\rho_i(u, v) = \mu(u) \land \mu(v)$ for some i and $\forall (u, v) \in \text{supp}(\rho_i)$ where $\text{supp}(\rho_i) \neq \emptyset$. Then $\rho_i^\infty(u, v) = \rho_i(u, v)$ for that i.
\end{lemma}
Proof. Let $\rho_i^{\infty}(u,v) = \mu(u) \land \mu(v)$ for some i and $\forall (u,v) \in \text{supp}(\rho_i)$.

\[\rho_i^{\infty}(u,v) = \bigvee \{\rho_j^i(u,v), j = 1, 2, \ldots\} \]

\[= \mu(u) \land \mu(v) \text{ since } \rho_j^i(u,v) \leq \mu(u) \land \mu(v) \forall j \text{ and } \rho_1^i(u,v) = \mu(u) \land \mu(v) \]

\[= \rho_i(u,v). \]

Using the above result, we can prove the following property of fuzzy ρ_i-tree.

Theorem 2.2.5. Let \tilde{G} be a fuzzy ρ_i-tree. Then $\rho_i(u,v) < \mu(u) \land \mu(v)$ for some $(u,v) \in \text{supp}(\rho_i)$.

Proof. If possible, let $\rho_i(u,v) = \mu(u) \land \mu(v)$ and $\forall (u,v) \in \text{supp}(\rho_i)$.

Then by Lemma 2.2.4, $\rho_i^{\infty}(u,v) = \rho_i(u,v)$.

Let \tilde{G} be a fuzzy ρ_i-tree. Then \tilde{G} has a partial fuzzy spanning subgraph structure $\tilde{F}_i = (\mu, \tau_1, \tau_2, \ldots, \tau_k)$ which is a τ_i-tree with

\[\rho_i(u,v) < \tau_i^{\infty}(u,v) \forall (u,v) \text{ not in } \tilde{F}_i. \]

i.e., $\rho_i^{\infty}(u,v) < \tau_i^{\infty}(u,v)$.

This is not possible.

Thus $\rho_i(u,v) < \mu(u) \land \mu(v)$ for some $(u,v) \in \text{supp}(\rho_i)$. \qed

Theorem 2.2.6. Let \tilde{G} be a ρ_i-cycle. \tilde{G} is a fuzzy ρ_i-cycle iff \tilde{G} is not a fuzzy ρ_i-tree.

Proof. Let \tilde{G} be a fuzzy ρ_i-cycle.

If possible, let \tilde{G} be a fuzzy ρ_i-tree. Then it has a partial fuzzy spanning subgraph structure $\tilde{F}_i = (\mu, \tau_1, \tau_2, \ldots, \tau_k)$ which is a τ_i-tree.

Then $\text{supp}(\rho_i) - \text{supp}(\tau_i) = \{(u,v)\}$ for some $u,v \in V$ since \tilde{G} is a ρ_i-cycle.
By definition of a fuzzy ρ_i-cycle, there does not exist unique ρ_i-edge (x, y) with $\rho_i(x, y) = \wedge \{ \rho_i(u, v) | (u, v) \in \text{supp}(\rho_i) \}$.

So there exists no τ_i-path in \tilde{F}_i from u to v having greater strength than $\rho_i(u, v)$. Otherwise, \tilde{G} will not be a fuzzy ρ_i-cycle.

So by definition of fuzzy ρ_i-tree, \tilde{G} is not a fuzzy ρ_i-tree.

Conversely, let \tilde{G} be not a fuzzy ρ_i-tree. Then it has no partial fuzzy spanning subgraph structure \tilde{F}_i which is a τ_i-tree. By assumption, \tilde{G} is a ρ_i-cycle.

Let $(\mu, \tau_1, \tau_2, ..., \tau_k)$ be a partial fuzzy spanning subgraph structure of \tilde{G}, which is a τ_i-tree. Then $\tau_i^{\infty}(u, v) \leq \rho_i(u, v) \forall (u, v) \in \text{supp}(\rho_i)$ and $\tau_i(u, v) = 0$.

Thus ρ_i does not attain $\wedge \{ \rho_i(x, y) | (x, y) \in \text{supp}(\rho_i) \}$ uniquely. Therefore $\tilde{G} = (\mu, \tau_1, \tau_2, ..., \tau_k)$ is a fuzzy ρ_i-cycle.

\[\Box \]

2.3 Generalisation

First we introduce some new terms like $R_{i_1 i_2 ... i_r}$-cycle, $R_{i_1 i_2 ... i_r}$-forest, $R_{i_1 i_2 ... i_r}$-tree etc. by generalising the above concepts.

First we define $R_{i_1 i_2 ... i_r}$-path, $1 \leq r \leq k$, as follows.

Definition 2.3.1. An alternating sequence of vertices and R_i-edges for some $i \in \{i_1, i_2, ..., i_r\}$, $1 \leq r \leq k$, of a graph structure $G = (V, R_1, R_2, ..., R_k)$ is an $R_{i_1 i_2 ... i_r}$-path where $R_{i_1}, R_{i_2}, ..., R_{i_r}$ are some among $R_1, R_2, ..., R_k$ which are represented in it.

Definition 2.3.2. An alternating sequence of vertices and R_i-edges
$v_0, e_1, v_1, e_2, \ldots, v_{n−1}, e_n, v_n = v_0$ of a fuzzy graph structure \tilde{G} consisting only of R_i-edges for some $i \in \{1, 2, \ldots, r\}$, (ie., e_k is an R_i-edge for some $i \in \{i_1, i_2, \ldots, i_r\}$, $k \in \{1, 2, \ldots, n − 1\}$) is said to be an $R_{i_1i_2\ldots i_r}$-cycle if $R_{i_1}, R_{i_2}, \ldots, R_{i_r}$ are some among $R_1, R_2, \ldots R_k$ which are represented in it by R_i-edges, $i = 1, 2, \ldots, k$.

Note that R_i-cycle of Definition 2.1.9 is an $R_{i_1i_2\ldots i_r}$-cycle with $r = 1$ and $i_1 = i$.

Definition 2.3.3. A graph structure which does not contain $R_{i_1i_2\ldots i_r}$-cycles for $i_1, i_2, \ldots i_r \in \{1, 2, \ldots, k\}$ which need not be distinct, is an $R_{i_1i_2\ldots i_r}$-forest.

Definition 2.3.4. An $R_{i_1i_2\ldots i_r}$-forest is an $R_{i_1i_2\ldots i_r}$-tree if it is connected by an $R_{i_1i_2\ldots i_r}$-path.

Definition 2.3.5. Let x_0, x_1, \ldots, x_n be a sequence of distinct vertices of \tilde{G}. Let $\rho_{i_p}(x_{j−1}, x_j) > 0 \forall j = 1, 2, \ldots, n$ for some $p \in \{1, 2, \ldots, r\}$ where $\rho_{i_1}, \rho_{i_2}, \ldots, \rho_{i_r}$ are some among $\rho_1, \rho_2, \ldots, \rho_k$. Then $x_0, x_1, \ldots x_n$ is a $\rho_{i_1i_2\ldots i_r}$-path.

In Example 1, x_0, x_1, x_2 is a ρ_{12}-path and x_0, x_5, x_4, x_3 is a ρ_{123}-path.

Definition 2.3.6. Two vertices of a fuzzy graph structure \tilde{G} joined by a $\rho_{i_1i_2\ldots i_r}$-path are said to be $\rho_{i_1i_2\ldots i_r}$-connected.

Definition 2.3.7. The strength of a $\rho_{i_1i_2\ldots i_r}$-path $x_0, x_1, \ldots x_n$ of a fuzzy graph structure \tilde{G} is

$$\bigwedge_{j=1}^{n} \bigvee_{q=1}^{r} \rho_{i_q}(x_{j−1}, x_j).$$

We may denote the strength of a $\rho_{i_1i_2\ldots i_r}$-path from x to y as $\rho_{i_1i_2\ldots i_r}(x, y)$ and the strength of a strongest $\rho_{i_1i_2\ldots i_r}$-path from x to y as $\rho_{i_{\infty}}(x, y)$.

We now define $\rho_{i_1i_2\ldots i_r}$-cycle, $\rho_{i_1i_2\ldots i_r}$-tree, $\rho_{i_1i_2\ldots i_r}$-forest etc.
Definition 2.3.8. \(\tilde{G} \) is a \(\rho_{i_1 i_2 ... i_r} \)-cycle iff \((\text{supp}(\mu), \text{supp}(\rho_1), \text{supp}(\rho_2), ..., \text{supp}(\rho_k))\) is an \(R_{i_1 i_2 ... i_r} \)-cycle (\(\rho_{i_1}, \rho_{i_2}, ..., \rho_{i_r} \) are some among \(\rho_1, \rho_2, ..., \rho_k \) which correspond to \(R_{i_1}, R_{i_2}, ..., R_{i_r} \)).

Note that \(\rho_{i_1 i_2 ... i_r} \)-cycle is a \(\rho_{i} \)-cycle of Definition 2.1.10 for \(r = 1 \) and \(i_1 = i \).

Definition 2.3.9. \(\tilde{G} \) is a fuzzy \(\rho_{i_1 i_2 ... i_r} \)-cycle iff
\[(\text{supp}(\mu), \text{supp}(\rho_1), \text{supp}(\rho_2), ..., \text{supp}(\rho_k))\] is an \(R_{i_1 i_2 ... i_r} \)-cycle and there exists no unique \((x, y)\) in \(\bigcup_{q=1}^{r} \text{supp}(\rho_q) \) such that
\[\bigvee_{q=1}^{r} \rho_q(x, y) = \bigwedge\{\bigvee_{q=1}^{r} \rho_q(u, v) | (u, v) \in \bigcup_{q=1}^{r} \text{supp}(\rho_q)\} \).

Definition 2.3.10. \(\tilde{G} \) is a \(\rho_{i_1 i_2 ... i_r} \)-forest if its \(\rho_p \)-edges (\(p \in \{1, 2, ..., r\} \)) form an \(R_{i_1 i_2 ... i_r} \)-forest.

Definition 2.3.11. \(\tilde{G} \) is a \(\rho_{i_1 i_2 ... i_r} \)-tree if it is connected by a \(\rho_{i_1 i_2 ... i_r} \)-path and it is a \(\rho_{i_1 i_2 ... i_r} \)-forest.

Definition 2.3.12. \(\tilde{G} \) is a fuzzy \(\rho_{i_1 i_2 ... i_r} \)-forest if it has a partial fuzzy spanning subgraph structure \(\tilde{F} = (\mu, \tau_1, \tau_2, ..., \tau_k) \) which is a \(\tau_{i_1 i_2 ... i_r} \)-forest (\(\tau_{i_1}, \tau_{i_2}, ..., \tau_{i_r} \) are some among \(\tau_1, \tau_2, ..., \tau_k \) which are represented in \(\tilde{F} \)) where for all \(\rho_p \)-edges (\(p \in \{1, 2, ..., r\} \)) not in \(\tilde{F} \), \(\rho_p(x, y) < \tau_{i_\infty}(x, y) \).

Definition 2.3.13. \(\tilde{G} \) is a fuzzy \(\rho_{i_1 i_2 ... i_r} \)-tree if it has a partial fuzzy spanning subgraph structure \(\tilde{F} = (\mu, \tau_1, \tau_2, ..., \tau_k) \) which is a \(\tau_{i_1 i_2 ... i_r} \)-tree where for all \(\rho_p \)-edges (\(p \in \{1, 2, ..., r\} \)) not in \(\tilde{F} \), \(\rho_p(x, y) < \tau_{i_\infty}(x, y) \).
2.4 Some results on fuzzy $\rho_{i_1i_2...i_r}$-trees and fuzzy $\rho_{i_1i_2...i_r}$-forests

We generalise the results discussed earlier to fuzzy $\rho_{i_1i_2...i_r}$-trees and fuzzy $\rho_{i_1i_2...i_r}$-forests.

Theorem 2.4.1. \tilde{G} is a fuzzy $\rho_{i_1i_2...i_r}$-forest iff in any $\rho_{i_1i_2...i_r}$-cycle for any $p \in \{1, 2, ..., r\}$, there exists some ρ_{ip}-edge (x, y) such that $\rho_{ip}(x, y) < \rho'_{i\infty}(x, y)$ where $(\mu, \rho'_1, \rho'_2, ..., \rho'_k)$ is the partial fuzzy spanning subgraph structure obtained by deleting (x, y) and $\rho'_{i_1}, \rho'_{i_2}, ..., \rho'_{i_r}$ are defined accordingly.

Proof. Sufficiency

If \tilde{G} does not contain a $\rho_{i_1i_2...i_r}$-cycle, it is a fuzzy $\rho_{i_1i_2...i_r}$-forest. Then there is nothing to prove.

Let \tilde{G} contains a $\rho_{i_1i_2...i_r}$-cycle. Let $p \in \{1, 2, ..., r\}$. Consider some ρ_{ip}-edge $(p \in \{1, 2, ..., r\}) (x, y)$ with $\rho_{ip}(x, y) < \rho'_{i\infty}(x, y)$.

Remove (x, y). Still there may be $\rho_{i_1i_2...i_r}$-cycles. Repeat the process with some ρ_{iq}-edge $(q \in \{1, 2, ..., r\}, q$ need not be different from $p)$.

Strength of the deleted ρ_{ip}-edges $(p \in \{1, 2, ..., r\})$ increases in each step. When the fuzzy graph structure is cleared of all $\rho_{i_1i_2...i_r}$-cycles, the resultant partial fuzzy spanning subgraph structure is a $\rho_{i_1i_2...i_r}$-forest. Let it be \tilde{F}.

If $(x, y) \notin \tilde{F}$, it was deleted. So there exists a $\rho_{i_1i_2...i_r}$-path from x to y in \tilde{F}, stronger than (x, y). There will be stronger $\rho_{i_1i_2...i_r}$-paths for diverting around deleted ρ_{ip}-edges $(p \in \{1, 2, ..., r\})$. Repeating the process, we get a $\rho_{i_1i_2...i_r}$-path consisting only of ρ_{ip}-edges $(p \in \{1, 2, ..., r\})$. Hence \tilde{G} is a fuzzy $\rho_{i_1i_2...i_r}$-forest.
Necessity

Let \tilde{G} be a fuzzy $\rho_{i_1 i_2 \ldots i_r}$-forest. Let C be a $\rho_{i_1 i_2 \ldots i_r}$-cycle. Some ρ_{i_p} - edge
$(p \in \{1, 2, \ldots, r\}) \ (x, y)$ of C is not in $\tilde{F} = (\mu, \tau_1, \tau_2, \ldots, \tau_k)$, the partial fuzzy spanning
subgraph structure which is a $\tau_{i_1 i_2 \ldots i_r}$-forest ($\tau_1, \tau_2, \ldots, \tau_r$ are some among $\tau_1, \tau_2, \ldots, \tau_k$
which are represented in it)and $\rho_{i_p}(x, y) < \tau_{i_p}(x, y)$.

But $\tau_{i_p}(x, y) < \rho'_{i_p}(x, y)$ where $(\mu, \rho'_1, \rho'_2, \ldots, \rho'_k)$ is obtained from \tilde{G} by deleting
(x, y) and $\rho'_1, \rho'_2, \ldots, \rho'_r$ are defined accordingly.

Therefore $\rho_{i_p}(x, y) < \rho'_{i_p}(x, y)$.

\begin{theorem}
Let \tilde{G} be a fuzzy graph structure. If there is at most one strongest $\rho_{i_1 i_2 \ldots i_r}$-path between any two vertices, then \tilde{G} must be a fuzzy $\rho_{i_1 i_2 \ldots i_r}$-forest.
\end{theorem}

\begin{proof}
Suppose there exists at most one strongest $\rho_{i_1 i_2 \ldots i_r}$-path between any two vertices of \tilde{G}.

If possible, let \tilde{G} be not a fuzzy $\rho_{i_1 i_2 \ldots i_r}$-forest. Then by definition, there exists a
$\rho_{i_1 i_2 \ldots i_r}$-cycle C such that for every ρ_{i_p}-edge $(p \in \{1, 2, \ldots, r\}) \ (x, y)$ in C,
$\rho_{i_p}(x, y) \geq \rho'_{i_1 i_2 \ldots i_r}(x, y)$ where $(\mu, \rho'_1, \rho'_2, \ldots, \rho'_k)$ is the partial fuzzy spanning subgraph structure obtained by deleting (x, y) from \tilde{G} and $\rho'_1, \rho'_2, \ldots, \rho'_r$ is the strength of $\rho_{i_1 i_2 \ldots i_r}$-path (there is only one such $\rho_{i_1 i_2 \ldots i_r}$-path) from x to y not involving (x, y).

ie., (x, y) is the strongest $\rho_{i_1 i_2 \ldots i_r}$-path from x to y.

If (x, y) is the weakest ρ_{i_p}-edge $(p \in \{1, 2, \ldots, r\})$ of C, the remaining ρ_{i_p}-edges
$(p \in \{1, 2, \ldots, r\})$ of C form a strongest $\rho_{i_1 i_2 \ldots i_r}$-path which is a contradiction.

Therefore \tilde{G} is a fuzzy $\rho_{i_1 i_2 \ldots i_r}$-forest.
\end{proof}

\begin{theorem}
Let \tilde{G} be a fuzzy $\rho_{i_1 i_2 \ldots i_r}$-tree and
$\tilde{G}^* = \langle \text{Supp}(\mu), \text{Supp}(\rho_1), \text{Supp}(\rho_2), \ldots, \text{Supp}(\rho_k) \rangle$ be not a $\rho_{i_1 i_2 \ldots i_r}$-tree. Then for
$p \in \{1, 2, \ldots, r\}$, there exists at least one ρ_p-edge (u, v) in $\bigcup_{q=1}^{r} \text{supp}(\rho_q)$ for which $\rho_p(u, v) < \rho_{i_{\infty}}(u, v)$.

Proof. Let \tilde{G} be a fuzzy $\rho_{i_{12} \ldots i_r}$-tree. Let $p \in \{1, 2, \ldots, r\}$. Then there exists a partial fuzzy spanning subgraph structure $\tilde{F} = (\mu, \tau_1, \tau_2, \ldots, \tau_k)$ which is a $\tau_{i_{12} \ldots i_r}$-tree and for every ρ_p-edge (u, v) not in \tilde{F}, $\rho_p(u, v) < \tau_{i_{\infty}}(u, v)$.

Also $\tau_{i_{\infty}}(u, v) \leq \rho_{i_{\infty}}(u, v)$

Therefore $\rho_p(u, v) < \rho_{i_{\infty}}(u, v) \forall \rho_p$-edge (u, v) not in \tilde{F}. \tilde{G} is a fuzzy $\rho_{i_{12} \ldots i_r}$-tree and \tilde{G}^* is not a $\rho_{i_{12} \ldots i_r}$-tree. Therefore there exists at least one ρ_p-edge $(p \in \{1, 2, \ldots, r\})$ not in \tilde{F}. i.e., there exists at least one ρ_p-edge $(p \in \{1, 2, \ldots, r\})$ (u, v) in $\bigcup_{q=1}^{r} \text{supp}(\rho_q)$ with $\rho_p(u, v) < \rho_{i_{\infty}}(u, v)$.

Lemma 2.4.4. Let \tilde{G} be a fuzzy graph structure with $\rho_p(u, v) = \mu(u) \land \mu(v)$ for some $p \in \{1, 2, \ldots, r\}$ and for every ρ_p-edge $(u, v) \in \bigcup_{q=1}^{r} \text{supp}(\rho_q)$ where $\bigcup_{q=1}^{r} \text{supp}(\rho_q) \neq \phi$.

Then $\rho_{i_{\infty}}(u, v) = \rho_p(u, v)$ for that p.

Proof. $\rho_p(u, v) = \mu(u) \land \mu(v)$ for every ρ_p-edge (u, v) for some $p \in \{1, 2, \ldots, r\}$,

$(u, v) \in \bigcup_{q=1}^{r} \text{supp}(\rho_q)$

$\rho_{i_{\infty}}(u, v)$ = strength of the strongest $\rho_{i_{12} \ldots i_r}$-path from u to v.

ie., $\rho_{i_{\infty}}(u, v) = \mu(u) \land \mu(v) = \rho_p(u, v)$ for that p.

Theorem 2.4.5. Let \tilde{G} be a fuzzy $\rho_{i_{12} \ldots i_r}$-tree. Let $p \in \{1, 2, \ldots, r\}$. Then $\rho_p(u, v) < \mu(u) \land \mu(v)$ for some ρ_p-edge (u, v) in $\bigcup_{q=1}^{r} \text{supp}(\rho_q)$.

Proof. If possible, let $\rho_p(u, v) = \mu(u) \land \mu(v) \forall (u, v) \in \bigcup_{q=1}^{r} \text{supp}(\rho_q)$

Then by Lemma 2.4.4, where $\rho'_j = \rho_j$ for $j \neq i$ $\rho_p(u, v) = \rho_{i_{\infty}}(u, v)$ for that p for which $\rho_p(u, v) = \mu(u) \land \mu(v)$.

Let \tilde{G} be a fuzzy $\rho_{i_1 i_2 ... i_r}$-tree. Then it has a partial fuzzy spanning subgraph structure $\tilde{F} = (\mu, \tau_1, \tau_2, ..., \tau_k)$ which is a $\tau_{i_1 i_2 ... i_r}$-tree with

$$\rho_p(u, v) < \tau_{i_\infty}(u, v) \forall \rho_p$$-edge (u, v) not in \tilde{F}.

Therefore $\rho_{i_\infty}(u, v) < \tau_{i_\infty}(u, v)$ which is a contradiction.

Hence $\rho_p(u, v) < \mu(u) \land \mu(v)$ for some ρ_p-edge (u, v).

Theorem 2.4.6. Let \tilde{G} be a $\rho_{i_1 i_2 ... i_r}$-cycle. \tilde{G} is a fuzzy $\rho_{i_1 i_2 ... i_r}$-cycle iff \tilde{G} is not a fuzzy $\rho_{i_1 i_2 ... i_r}$-tree.

Proof. Let \tilde{G} be a fuzzy $\rho_{i_1 i_2 ... i_r}$-cycle.

If possible, let it be a fuzzy $\rho_{i_1 i_2 ... i_r}$-tree also. Then it has a partial fuzzy spanning subgraph structure $\tilde{F} = (\mu, \tau_1, \tau_2, ..., \tau_k)$ which is a $\tau_{i_1 i_2 ... i_r}$-tree. Then

$$\left[\bigcup_{q=1}^{r} \text{supp}(\rho_q) - \bigcup_{q=1}^{r} \text{supp}(\tau_q) \right] = \{(u, v)\} \text{ for some } u, v \in V \text{ since } \tilde{G} \text{ is a } \rho_{i_1 i_2 ... i_r}\text{-cycle.}$$

There does not exist a unique (x, y) in $\bigcup_{q=1}^{r} \text{supp}(\rho_q)$ such that

$$\bigwedge_{q=1}^{r} \rho_q(x, y) = \bigwedge_{q=1}^{r} \left\{ \rho_q(u, v) : (u, v) \in \bigcup_{q=1}^{r} \text{supp}(\rho_q) \right\}.$$

Therefore there exists no $\tau_{i_1 i_2 ... i_r}$-path in \tilde{F} from u to v having greater strength than $\rho_{i_1 i_2 ... i_r}(u, v)$. Otherwise \tilde{G} will not be a fuzzy $\rho_{i_1 i_2 ... i_r}$-cycle.

So \tilde{G} is not a fuzzy $\rho_{i_1 i_2 ... i_r}$-tree.

Conversely, let \tilde{G} be not a fuzzy $\rho_{i_1 i_2 ... i_r}$-tree. Then it has no partial fuzzy spanning subgraph structure \tilde{F} which is a $\tau_{i_1 i_2 ... i_r}$-tree.

\tilde{G} is a $\rho_{i_1 i_2 ... i_r}$-cycle by assumption. Let $(\mu, \tau_1, \tau_2, ..., \tau_k)$ be a partial fuzzy spanning subgraph structure of \tilde{G}, which is a $\tau_{i_1 i_2 ... i_r}$-tree with $\rho_p(u, v) < \tau_{i_\infty}(u, v)$ for all ρ_p-edge $(p \in \{1, 2, ..., r\})$ not in \tilde{F}.

$$\tau_{i_\infty}(u, v) \leq \rho_p(u, v) \forall \rho_p$$-edge $(u, v) \in \bigcup_{q=1}^{r} \text{supp}(\rho_q), p \in \{1, 2, ..., r\}$, where

$$\tau_p(u, v) = 0 \forall p = 1, 2, ..., r.$$
\begin{align*}
\tau_p(x, y) &= \rho_p(x, y) \quad \forall (x, y) \in \bigcup_{q=1}^r \text{supp}(\rho_q) - \{(u, v)\} \text{ for } p \in \{1, 2, \ldots, r\}.
\end{align*}

Therefore there does not exist unique \((x, y)\) with \(\bigvee_{q=1}^r \rho_q(x, y) = \bigwedge_{q=1}^r \{\bigvee_{q=1}^r \rho_q(u, v) | (u, v) \in \text{supp}(\rho_q)\}\).

Therefore \(\tilde{G}\) is a fuzzy \(\rho_1\rho_2\ldots\rho_r\)-cycle.

\section*{2.5 \(\rho_i\)-bridges and \(\rho_i\)-cut vertices}

We introduce some more new concepts like \(\rho_i\)-bridges and \(\rho_i\)-cut vertices of a fuzzy graph structure.

Definition 2.5.1. Let \((x, y)\) be a \(\rho_i\)-edge of \(\tilde{G}\). Let \((\mu, \rho'_1, \rho'_2, \ldots, \rho'_i, \rho'_{i+1}, \ldots, \rho'_k)\) be a partial fuzzy spanning subgraph structure obtained by deleting \((x, y)\) with \(\rho'_i(x, y) = 0\) and \(\rho'_i(x_1, y_1) = \rho_i(x_1, y_1) \forall \rho_i\)-edge \((x_1, y_1)\) other than \((x, y)\). If \(\rho'_i(u, v) < \rho_i(u, v)\) for some \((u, v) \in \text{supp}(\rho_i)\), then \((u, v)\) is a \(\rho_i\)-bridge.

Now we move on to some results using the concept of \(\rho_i\)-bridges.

Theorem 2.5.1. Let \(\tilde{G}\) be a fuzzy graph structure. If \((x, y)\) is a \(\rho_i\)-bridge, then \(\rho'_i(x, y) < \rho_i(x, y)\) where \((\mu, \rho'_1, \rho'_2, \ldots, \rho'_i, \rho'_{i+1}, \ldots, \rho'_k)\) is a partial fuzzy spanning subgraph structure obtained by deleting \((x, y)\), for \(i = 1, 2, \ldots, k\).

Proof. If possible, let \(\rho'_i(x, y) \geq \rho_i(x, y)\) for some \(\rho_i\)-bridge \((x, y)\). i.e., there is a \(\rho_i\)-path of strength greater than \(\rho_i(x, y)\) from \(x\) to \(y\) which does not have the \(\rho_i\)-edge \((x, y)\). Thus any \(\rho_i\)-path having the \(\rho_i\)-edge \((x, y)\) as a part of it can be replaced by a \(\rho_i\)-path without the \(\rho_i\)-edge \((x, y)\) not reducing its strength.

This is a contradiction to the fact that \((x, y)\) is a \(\rho_i\)-bridge.

Hence \(\rho'_i(x, y) < \rho_i(x, y)\) for \(i = 1, 2, \ldots, k\).
Remark 2.5.1. Converse of the above result also holds. i.e., if $\rho'_i(x, y) < \rho_i(x, y)$, then (x, y) is a ρ_i-bridge.

Proof. If possible, let (x, y) be not a ρ_i-bridge. Then
$\rho''_i(x, y) = \rho''_i(x, y) \geq \rho_i(x, y)$ which is a contradiction to our assumption.

Therefore (x, y) is a ρ_i-bridge.

Theorem 2.5.2. Let \tilde{G} be a fuzzy graph structure which is a fuzzy ρ_i-forest. Then the ρ_i-edges of the partial fuzzy spanning subgraph structure $\tilde{F}_i = (\mu, \tau_1, \tau_2, ..., \tau_k)$ which is a τ_i-forest, are the ρ_i-bridges of \tilde{G}.

Proof. Case 1: (x, y) is a ρ_i-edge not in \tilde{F}_i

By definition of a fuzzy ρ_i-forest, $\rho_i(x, y) < \tau_i(x, y) \leq \rho''_i(x, y)$ where
$(\mu, \rho'_1, \rho'_2, ..., \rho'_k)$ is a partial fuzzy spanning subgraph structure obtained by deleting (x, y).

Therefore (x, y) is not a ρ_i-bridge by Theorem 2.5.1.

Case 2: (x, y) is a τ_i-edge of \tilde{F}_i

If possible, let (x, y) be not a ρ_i-bridge.

Then there exists a ρ_i-path P_i from x to y not involving (x, y) with strength greater than or equal to $\rho_i(x, y)$. So P_i and \tilde{F}_i form a ρ_i-cycle.

But \tilde{F}_i does not contain τ_i-cycles. Therefore, P_i contains ρ_i-edges not in \tilde{F}_i.

Let (u, v) be such a ρ_i-edge of P_i.

This can be replaced by a τ_i-path P_i in \tilde{F}_i having strength greater than $\rho_i(u, v)$ by definition of a fuzzy ρ_i-forest.

Also $\rho_i(u, v) \geq \rho_i(x, y)$

All τ_i-edges of P_i are stronger than $\rho_i(u, v)$ which is greater than or equal to $\rho_i(x, y)$.
Therefore P_i does not contain (x, y). If it contains (x, y), its strength will be less than or equal to $\tau_i(x, y) \leq \rho_i(x, y)$.

Thus we have a τ_i-path in \tilde{F}_i from x to y not involving (x, y).

This gives a τ_i-cycle in \tilde{F}_i and hence a ρ_i-cycle which is not possible.

Hence (x, y) is a ρ_i-bridge.

Thus the ρ_i-edges of \tilde{F}_i are the ρ_i-bridges of \tilde{G}. \hfill \Box

Now, we define a ρ_i-cut vertex. For that first we define the partial subgraph structure $(\mu', \rho'_1, \rho'_2, ..., \rho'_k)$.

Definition 2.5.2. $\tilde{G}' = (\mu', \rho'_1, \rho'_2, ..., \rho'_k)$ is the partial fuzzy subgraph structure obtained by removing w of \tilde{G}. i.e.,

$\mu'(w) = 0$ and $\mu'(u) = \mu(u) \forall u \neq w$

$\rho'_i(w, v) = 0 \forall v \in V$ and $\rho'_i(u, v) = \rho_i(u, v) \forall (u, v) \neq (w, v), i = 1, 2, ..., k.$

Definition 2.5.3. A vertex w of \tilde{G} is a ρ_i-cut vertex if

$\rho^\infty_i(u, v) < \rho^\infty_i(u, v)$ for some u, v with $u \neq w \neq v$ where μ' and ρ'_i are as in Definition 2.5.2.

Now we discuss some results on ρ_i-bridges and ρ_i-cut vertices.

Theorem 2.5.3. Let \tilde{G} be a fuzzy graph structure with

$\tilde{G}^* = (\text{supp}(\mu), \text{supp}(\rho_1), \text{supp}(\rho_2), ..., \text{supp}(\rho_k))$ a fuzzy ρ_i-cycle. If a vertex of \tilde{G} is a ρ_i-cut vertex of \tilde{G}, then it is a common vertex of two ρ_i-bridges.

Proof. Consider a ρ_i-cut vertex w of \tilde{G}. By the definition of a ρ_i-cut vertex, there exists two vertices u and v different from w such that w is on every strongest $u - v \rho_i$-path.
Given that \(\tilde{G}^*\) is a fuzzy \(\rho_i\)-cycle. Then there exists only one strongest \(\rho_i\)-path \(P_i\) from \(u\) to \(v\) containing \(w\). All \(\rho_i\)-edges of \(P_i\) are \(\rho_i\)-bridges.

So \(w\) is common to two \(\rho_i\)-bridges.

Converse of the above result also holds as is evident from the next theorem.

Theorem 2.5.4. Let \(\tilde{G}\) be a fuzzy graph structure. If \(w\) is common to at least two \(\rho_i\)-bridges of \(\tilde{G}\), then \(w\) is a \(\rho_i\)-cut vertex.

Proof. Let \((u_1, w)\) and \((w, v_2)\) be two \(\rho_i\)-bridges with \(w\) as the common vertex.

Since \((u_1, w)\) is a \(\rho_i\)-bridge, it is on every strongest \(u - v\) \(\rho_i\)-path for some \(u\) and \(v\).

Case 1: \(w \neq u, w \neq v\)

In this case, \(w\) is on every strongest \(u - v\) \(\rho_i\)-path for some \(u\) and \(v\). Then \(w\) is a \(\rho_i\)-cut vertex.

Case 2: Either \(w = u\) or \(w = v\)

In this case either \((u_1, w)\) is on every strongest \(u - w\) \(\rho_i\)-path or \((w, v_2)\) is on every strongest \(w - v\) \(\rho_i\)-path.

If possible, let \(w\) be not a \(\rho_i\)-cut vertex.

By definition of \(\rho_i\)-cut vertex, there exists a strongest \(\rho_i\)-path not containing \(w\) between any pair of vertices. Consider such a path \(P_i\) joining \(u_1\) and \(v_2\). Then \(P_i, (u_1, w), (w, v_2)\) form a \(\rho_i\)-cycle.

a) Let \(u_1, w, v_2\) be not a strongest \(\rho_i\)-path.

Then \((u_1, w)\) or \((w, v_2)\) or both become the weakest \(\rho_i\)-edges of the above \(\rho_i\)-cycle consisting of \(P_i, (u_1, w)\) and \((w, v_2)\) since every \(\rho_i\)-edge of \(P_i\) will be stronger than \((u_1, w)\) and \((w, v_2)\).
This is not possible since \((u_1, w)\) and \((w, v_2)\) are \(\rho_i\)-bridges.

b) Let \(u_1, w, v_2\) also be a strongest \(\rho_i\)-path joining \(u_1\) and \(v_2\).

Then \(\rho_i\)(\(u_1, v_2\)) = \(\rho_i\)(\(u_1, w\)) \& \(\rho_i\)(\(w, v_2\)) ie., either \((u_1, w)\) or \((w, v_2)\) or both are the weakest \(\rho_i\)-edges of the above \(\rho_i\)-cycle because \(P_i\) is as strong as \(u_1, w, v_2\).

This is not possible because \(u_1, w, v_2\) is a strongest \(\rho_i\)-path.

Therefore, \(w\) is a \(\rho_i\)-cut vertex.

Now we prove that the internal vertices of a \(\rho_i\)-tree of a fuzzy \(\rho_i\)-tree are the \(\rho_i\)-cut vertices.

Theorem 2.5.5. Let \(\tilde{G}\) be a fuzzy \(\rho_i\)-tree for which \(\tilde{F}_i = (\mu, \tau_1, \tau_2, ..., \tau_k)\) is a partial fuzzy spanning subgraph structure which is a \(\tau_i\)-tree and \(\rho_i(x, y) < \tau_i(x, y)\forall(x, y)\) not in \(\tilde{F}_i\). Then the internal vertices of \(\tilde{F}_i\) are precisely the \(\rho_i\)-cut vertices of \(\tilde{G}\).

Proof. Consider a vertex \(w\) of \(\tilde{F}_i\).

Case 1: \(w\) is not an end vertex of \(\tilde{F}_i\)

\(w\) is common to two \(\tau_i\)-edges of \(\tilde{F}_i\) at least and by Theorem 2.5.2, they are \(\rho_i\)-bridges of \(\tilde{G}\). Then by Theorem 2.5.4, \(w\) is a \(\rho_i\)-cut vertex.

Case 2: \(w\) is an end vertex of \(\tilde{F}_i\)

If \(w\) is a \(\rho_i\)-cut vertex, it lies on every strongest \(\rho_i\)-path and hence \(\tau_i\)-path joining \(u\) and \(v\) for some \(u\) and \(v\) in \(V\). One of such \(\tau_i\)-paths lies in \(\tilde{F}_i\). But \(w\) is an end vertex of \(\tilde{F}_i\). So this is not possible. So \(w\) is not a \(\rho_i\)-cut vertex. ie., the internal vertices of \(\tilde{F}_i\) are precisely the \(\rho_i\)-cut vertices of \(\tilde{G}\).

The above theorem leads us to the following corollary.
Corollary 2.5.6. A ρ_i-cut vertex, of a fuzzy graph structure \tilde{G} which is a fuzzy ρ_i-tree, is common to at least two ρ_i-bridges.

2.6 $\rho_{i_1i_2...i_r}$-bridges and $\rho_{i_1i_2...i_r}$-cut vertices

We introduce some more new concepts like $\rho_{i_1i_2...i_r}$-bridges and $\rho_{i_1i_2...i_r}$-cut vertices of a fuzzy graph structure.

Definition 2.6.1. Let $i \in \{i_1, i_2, ..., i_r\}$ where $1 \leq r \leq k$. If $\rho_i^\infty(u,v) < \rho_i^\infty(u,v)$ for some $(u,v) \in \bigcup_{i = i_1}^{i_r} \text{supp}(\rho_i)$, then (u,v) is a $\rho_{i_1i_2...i_r}$-bridge.

We move on to some results using the concept of $\rho_{i_1i_2...i_r}$-bridges.

Theorem 2.6.1. Let \tilde{G} be a fuzzy graph structure. If (x,y) is a $\rho_{i_1i_2...i_r}$-bridge, then $\rho_i^\infty(x,y) < \rho_i(x,y)$ where $(\mu, \rho_1', \rho_2', ..., \rho_k')$ is a partial fuzzy spanning subgraph structure obtained by deleting (x,y), for $i = 1, 2, ..., k$.

Proof. If possible, let $\rho_i^\infty(x,y) \geq \rho_i(x,y)$ for some $\rho_{i_1i_2...i_r}$-bridge (x,y). i.e., there is a $\rho_{i_1i_2...i_r}$-path of strength greater than $\rho_i(x,y)$, $i = \text{some } i_1, i_2, ..., i_r$, $1 \leq r \leq k$ from x to y which does not have the ρ_i-edge $i \in \{i_1, i_2, ..., i_r\}$ (x,y). Thus any $\rho_{i_1i_2...i_r}$-path having the ρ_i-edge (x,y) as a part of it can be replaced by a $\rho_{i_1i_2...i_r}$-path without the ρ_i-edge (x,y) not reducing its strength.

This is a contradiction to the fact that (x,y) is a $\rho_{i_1i_2...i_r}$-bridge.

Hence $\rho_i^\infty(x,y) < \rho_i(x,y)$. \qed

Remark 2.6.1. Converse of the above result also holds. i.e., if $\rho_i^\infty(x,y) < \rho_i(x,y)$ for some $i \in \{i_1, i_2, ..., i_r\}$, $(\rho_i > 0)$ then (x,y) is a $\rho_{i_1i_2...i_r}$-bridge.
Proof. If possible, let \((x, y)\) be not a \(\rho_{i_1,i_2,...,i_r}\)-bridge. Then
\[
\rho_i^\infty(x, y) = \rho_i^\infty(x, y) \geq \rho_i(x, y),
\]
for that \(i \in \{i_1, i_2, ..., i_r\}\) for which \(\rho_i^\infty(x, y) < \rho_i(x, y)\) which is a contradiction to our assumption.

Therefore \((x, y)\) is a \(\rho_{i_1,i_2,...,i_r}\)-bridge.

\[\square\]

Theorem 2.6.2. Let \(\tilde{G}\) be a fuzzy graph structure which is a fuzzy \(\rho_{i_1,i_2,...,i_r}\)-forest. Then the \(\rho_i\)-edges, \(i = i_1, i_2, ..., i_r\) of the partial fuzzy spanning subgraph structure \(\tilde{F}_i = (\mu, \tau_1, \tau_2, ..., \tau_k)\) which is a \(\tau_{i_1,i_2,...,i_r}\)-forest, are the \(\rho_{i_1,i_2,...,i_r}\)-bridges of \(\tilde{G}\).

Proof. Case 1: \((x, y)\) is a \(\rho_i\)-edge for some \(i \in \{i_1, i_2, ..., i_r\}\), not in \(\tilde{F}_i\)

By definition of a fuzzy \(\rho_{i_1,i_2,...,i_r}\)-forest, \(\rho_i(x, y) < \tau_i^\infty(x, y) \leq \rho_i^\infty(x, y), \) for that \(i \in \{i_1, i_2, ..., i_r\}\) for which \(\rho_i(x, y) > 0\).

Therefore \((x, y)\) is not a \(\rho_{i_1,i_2,...,i_r}\)-bridge by Theorem 2.6.1.

Case 2: \((x, y)\) is a \(\tau_i\)-edge, \(i \in \{i_1, i_2, ..., i_r\}, 1 \leq r \leq k\) of \(\tilde{F}_i\)

If possible, let \((x, y)\) be not a \(\rho_{i_1,i_2,...,i_r}\)-bridge.

Then there exists a \(\rho_{i_1,i_2,...,i_r}\)-path \(P_i\) from \(x\) to \(y\) not involving \((x, y)\) with strength greater than or equal to \(\rho_i(x, y), i = i_1, i_2, ..., i_r\). So \(P_i\) and \(\tilde{F}_i\) form a \(\rho_{i_1,i_2,...,i_r}\)-cycle.

But \(\tilde{F}_i\) does not contain \(\tau_{i_1,i_2,...,i_r}\)-cycles. Therefore, \(P_i\) contains \(\rho_i\)-edges, for some \(i \in \{i_1, i_2, ..., i_r\}\) not in \(\tilde{F}_i\).

Let \((u, v)\) be such a \(\rho_i\)-edge of \(P_i\) for some \(i \in \{i_1, i_2, ..., i_r\}\).

This can be replaced by a \(\tau_{i_1,i_2,...,i_r}\)-path \(P_i\) in \(\tilde{F}_i\) having strength greater than \(\rho_i(u, v), i = i_1, i_2, ..., i_r\) by definition of a fuzzy \(\rho_{i_1,i_2,...,i_r}\)-forest.

Also \(\rho_i(u, v) \geq \rho_i(x, y)\), \(i \in \{i_1, i_2, ..., i_r\}\)

All \(\tau_i\)-edges, \(i = i_1, i_2, ..., i_r\), of \(P_i\) are stronger than \(\rho_i(u, v), i \in \{i_1, i_2, ..., i_r\}\), which is greater than or equal to \(\rho_i(x, y), i \in \{i_1, i_2, ..., i_r\}\).

Therefore \(P_i\) does not contain \((x, y)\). If it contains \((x, y)\), its strength will be less
than or equal to \(\tau_i(x, y) \) for some \(i \in \{i_1, i_2, ..., i_r\} \), which is less than or equal to \(\rho_i(x, y) \).

Thus we have a \(\tau_{i_1, i_2, ..., i_r} \)-path in \(\tilde{F}_i \) from \(x \) to \(y \) not involving \((x, y) \).

This gives a \(\tau_{i_1, i_2, ..., i_r} \)-cycle in \(\tilde{F}_i \) and hence a \(\rho_{i_1, i_2, ..., i_r} \)-cycle which is not possible. Hence \((x, y) \) is a \(\rho_{i_1, i_2, ..., i_r} \)-bridge.

Thus the \(\rho_{i_1, i_2, ..., i_r} \)-edges, \(i \in \{i_1, i_2, ..., i_r\} \) of \(\tilde{F}_i \) are the \(\rho_{i_1, i_2, ..., i_r} \)-bridges of \(\tilde{G} \).

Now, we define a \(\rho_{i_1, i_2, ..., i_r} \)-cut vertex. For that first we define the partial subgraph strucure(\(\mu', \rho'_1, \rho'_2, ..., \rho'_k \)).

Definition 2.6.2. A vertex \(w \) of \(\tilde{G} \) is a \(\rho_{i_1, i_2, ..., i_r} \)-cut vertex if
\[
\rho'_i(u, v) < \rho_i(u, v) \quad \text{for some } u, v \text{ for some } i \in \{i_1, i_2, ..., i_r\}, \text{ with } u \neq w \neq v \text{ where } \mu' \text{ and } \rho'_i \text{ are as defined earlier.}
\]

Now we discuss some results on \(\rho_{i_1, i_2, ..., i_r} \)-bridges and \(\rho_{i_1, i_2, ..., i_r} \)-cut vertices.

Theorem 2.6.3. Let \(\tilde{G} \) be a fuzzy graph structure with
\[
\tilde{G}^* = (\text{supp}(\mu), \text{supp}(\rho_1), \text{supp}(\rho_2), ..., \text{supp}(\rho_k)) \text{ a fuzzy } \rho_{i_1, i_2, ..., i_r} \text{-cycle. If a vertex of } \tilde{G} \text{ is a } \rho_{i_1, i_2, ..., i_r} \text{-cut vertex of } \tilde{G}, \text{ then it is a common vertex of two } \rho_{i_1, i_2, ..., i_r} \text{-bridges.}
\]

Proof. Consider a \(\rho_{i_1, i_2, ..., i_r} \)-cut vertex \(w \) of \(\tilde{G} \). By the definition of a \(\rho_{i_1, i_2, ..., i_r} \)-cut vertex, there exist two vertices \(u \) and \(v \) different from \(w \) such that \(w \) is on every strongest \(u - v \rho_{i_1, i_2, ..., i_r} \)-path.

Given that \(\tilde{G}^* \) is a fuzzy \(\rho_{i_1, i_2, ..., i_r} \)-cycle. Then there exists only one strongest \(\rho_{i_1, i_2, ..., i_r} \)-path \(P_i \) from \(u \) to \(v \) containing \(w \). All \(\rho_i \)-edges, \(i \in \{i_1, i_2, ..., i_r\} \) of \(P_i \) are \(\rho_{i_1, i_2, ..., i_r} \)-bridges.

So \(w \) is common to two \(\rho_{i_1, i_2, ..., i_r} \)-bridges.

Converse of the above result also holds as is evident from the next theorem.
Theorem 2.6.4. Let \tilde{G} be a fuzzy graph structure. If w is common to at least two $\rho_{i_1,i_2,\ldots,i_r}$-bridges of \tilde{G}, then w is a $\rho_{i_1,i_2,\ldots,i_r}$-cut vertex.

Proof. Let (u_1, w) and (w, v_2) be two $\rho_{i_1,i_2,\ldots,i_r}$-bridges with w as the common vertex.

Since (u_1, w) is a $\rho_{i_1,i_2,\ldots,i_r}$-bridge, it is on every strongest $u - v\rho_{i_1,i_2,\ldots,i_r}$-path for some u and v.

Case 1: $w \neq u, w \neq v$

In this case, w is on every strongest $u - v\rho_{i_1,i_2,\ldots,i_r}$-path for some u and v. Then w is a $\rho_{i_1,i_2,\ldots,i_r}$-cut vertex.

Case 2: Either $w = u$ or $w = v$

In this case either (u_1, w) is on every strongest $u - w\rho_{i_1,i_2,\ldots,i_r}$-path or (w, v_2) is on every strongest $w - v\rho_{i_1,i_2,\ldots,i_r}$-path.

If possible, let w be not a $\rho_{i_1,i_2,\ldots,i_r}$-cut vertex.

By definition of $\rho_{i_1,i_2,\ldots,i_r}$-cut vertex, there exists a strongest $\rho_{i_1,i_2,\ldots,i_r}$-path not containing w between any pair of vertices. Consider such a path P_i joining u_1 and v_2. Then $P_i, (u_1, w), (w, v_2)$ form a $\rho_{i_1,i_2,\ldots,i_r}$-cycle.

a) Let u_1, w, v_2 be not a strongest $\rho_{i_1,i_2,\ldots,i_r}$-path.

Then (u_1, w) or (w, v_2) or both become the weakest ρ_i-edges, $i \in \{i_1, i_2, \ldots, i_r\}$, of the above $\rho_{i_1,i_2,\ldots,i_r}$-cycle consisting of $P_i, (u_1, w)$ and (w, v_2) since every ρ_i-edge, $i = i_1, i_2, \ldots, i_r$, of P_i will be stronger than (u_1, w) and (w, v_2).

This is not possible since (u_1, w) and (w, v_2) are $\rho_{i_1,i_2,\ldots,i_r}$-bridges.

b) Let u_1, w, v_2 also be a strongest $\rho_{i_1,i_2,\ldots,i_r}$-path joining u_1 and v_2.

Then $\rho_i^\infty(u_1, v_2) = \rho_i(u_1, w) \wedge \rho_i(w, v_2)$ for some $i \in \{i_1, i_2, \ldots, i_r\}$, i.e., either (u_1, w) or (w, v_2) or both are the weakest ρ_i-edges, $i \in \{i_1, i_2, \ldots, i_r\}$, of the above $\rho_{i_1,i_2,\ldots,i_r}$-cycle because P_i is as strong as u_1, w, v_2.
This is not possible because u_1, w, v_2 is a strongest $\rho_{i_1,i_2,...,i_r}$-path.

Therefore, w is a $\rho_{i_1,i_2,...,i_r}$-cut vertex. \hfill \Box

Now we prove that the internal vertices of a $\rho_{i_1,i_2,...,i_r}$-tree of a fuzzy $\rho_{i_1,i_2,...,i_r}$-tree are the $\rho_{i_1,i_2,...,i_r}$-cut vertices.

Theorem 2.6.5. Let \tilde{G} be a fuzzy $\rho_{i_1,i_2,...,i_r}$-tree for which $\tilde{F}_i = (\mu, \tau_{i_1}, \tau_{i_2}, ..., \tau_k)$ is a partial fuzzy spanning subgraph structure which is a $\tau_{i_1,i_2,...,i_r}$-tree and $\rho_i(x,y) < \tau_i^{\infty}(x,y)$ for some $i \in \{i_1,i_2,...,i_r\}$ $\forall (x,y)$ not in \tilde{F}_i. Then the internal vertices of \tilde{F}_i are precisely the $\rho_{i_1,i_2,...,i_r}$-cut vertices of \tilde{G}.

Proof. Consider a vertex w of \tilde{F}_i.

Case 1: w is not an end vertex of \tilde{F}_i

w is common to two τ_i-edges, $i \in \{i_1,i_2,...,i_r\}$, of \tilde{F}_i at least and by Theorem 2.6.2, they are $\rho_{i_1,i_2,...,i_r}$-bridges of \tilde{G}. Then by Theorem 2.6.4, w is a $\rho_{i_1,i_2,...,i_r}$-cut vertex.

Case 2: w is an end vertex of \tilde{F}_i

If w is a $\rho_{i_1,i_2,...,i_r}$-cut vertex, it lies on every strongest $\rho_{i_1,i_2,...,i_r}$-path and hence $\tau_{i_1,i_2,...,i_r}$-path joining u and v for some u and v in V. One of such $\tau_{i_1,i_2,...,i_r}$-paths lies in \tilde{F}_i. But w is an end vertex of \tilde{F}_i. So this is not possible. So w is not a $\rho_{i_1,i_2,...,i_r}$-cut vertex. ie., the internal vertices of \tilde{F}_i are precisely the $\rho_{i_1,i_2,...,i_r}$-cut vertices of \tilde{G}. \hfill \Box

The above theorem leads us to the following corollary.

Corollary 2.6.6. A $\rho_{i_1,i_2,...,i_r}$-cut vertex, of a fuzzy graph structure \tilde{G} which is a fuzzy $\rho_{i_1,i_2,...,i_r}$-tree, is common to at least two $\rho_{i_1,i_2,...,i_r}$-bridges.
2.7 Regularity in fuzzy graph structures

We recall some concepts introduced by Sampathkumar[61].

Definition 2.7.1. [61] The degree of a vertex \(v \) is the number of \(R_i \)-edges incident at \(v \) for various \(i \).

The \(R_i \)-degree of \(v \) is the number of \(R_i \)-edges incident at \(v \).

We define \(R_{i_1i_2...i_r} \)-degree as follows.

Definition 2.7.2. The number of \(R_{i_1}−R_{i_2}−...R_{i_r} \)-edges, \(1 < r < k \), incident at \(v \) is the \(R_{i_1i_2...i_r} \)-degree of \(v \).

We extend the concepts of degree, order and size of a fuzzy graph introduced in [47] by Nagoor Gani and Basheer Ahamed to fuzzy graph structures.

Definition 2.7.3. Let \(G \) be a graph structure and \(\tilde{G} \) be a fuzzy graph structure of \(G \).

\(\rho_i \)-degree of a vertex \(u \) is \(d_{\rho_i}(u) = \sum_{(u,v) \in R_i} \rho_i(u,v) \). Note that this is equal to \(\sum_{(u,v) \in \text{supp}(\rho_i)} \rho_i(u,v) \).

Maximum \(\rho_i \)-degree of \(\tilde{G} \) is \(\Delta_{\rho_i}(\tilde{G}) = \bigvee \{d_{\rho_i}(v) : v \in V \} \).

Minimum \(\rho_i \)-degree of \(\tilde{G} \) is \(\delta_{\rho_i}(\tilde{G}) = \bigwedge \{d_{\rho_i}(v) : v \in V \} \).

Example 4

Let \(V = \{x_0, x_1, x_2, x_3, x_4, x_5\} \), \(R_1 = \{(x_0, x_1), (x_0, x_2), (x_3, x_4)\} \), \(R_2 = \{(x_1, x_2), (x_4, x_5)\} \), \(R_3 = \{(x_2, x_3)\} \)

and \(G = (V, R_1, R_2, R_3) \) be a graph structure. Let \(\tilde{G} = (\mu, \rho_1, \rho_2, \rho_3) \) where \(\mu(x_0) = 0.8, \mu(x_1) = 0.9, \mu(x_2) = 0.6, \mu(x_3) = 0.5, \mu(x_4) = 0.6, \mu(x_5) = 0.7 \)
\[\begin{align*}
\rho_1(x_0, x_1) &= 0.8, \rho_1(x_0, x_2) = 0.5, \rho_1(x_3, x_4) = 0.4, \\
\rho_2(x_1, x_2) &= 0.6, \rho_2(x_4, x_5) = 0.6, \\
\rho_3(x_2, x_3) &= 0.3, \rho_3(x_0, x_5) = 0.3
\end{align*} \]

\[\begin{align*}
d_{\rho_1}(x_0) &= 1.3, d_{\rho_1}(x_1) = 0.8, d_{\rho_1}(x_2) = 0.5, d_{\rho_1}(x_3) = 0.4, d_{\rho_1}(x_4) = 0.4, d_{\rho_1}(x_5) = 0, \\
d_{\rho_2}(x_0) &= 0, d_{\rho_2}(x_1) = 0.6, d_{\rho_2}(x_2) = 0.6, d_{\rho_2}(x_3) = 0, d_{\rho_2}(x_4) = 0.6, d_{\rho_2}(x_5) = 0.6, \\
d_{\rho_3}(x_0) &= 0.3, d_{\rho_3}(x_1) = 0, d_{\rho_3}(x_2) = 0.3, d_{\rho_3}(x_3) = 0.3, d_{\rho_3}(x_4) = 0, d_{\rho_3}(x_5) = 0.3
\end{align*} \]

\[\begin{align*}
\Delta_{\rho_1}(\tilde{G}) &= 1.3, \Delta_{\rho_2}(\tilde{G}) = 0.6, \Delta_{\rho_3}(\tilde{G}) = 0.3, \\
\delta_{\rho_1}(\tilde{G}) &= 0.4, \delta_{\rho_2}(\tilde{G}) = 0.6, \delta_{\rho_3}(\tilde{G}) = 0.3.
\end{align*} \]

Definition 2.7.4. Let \(G \) be a graph structure and \(\tilde{G} \) be a fuzzy graph structure of \(G \).

- \(\rho_{i_1i_2...i_r} \)-degree of a vertex \(u \) is \(d_{\rho_{i_1i_2...i_r}}(u) = \sum_{q=i_1:(u,v) \in \bigcup_{i=1}^{i_r} R_q} \rho_q(u,v) \).
- Maximum \(\rho_{i_1i_2...i_r} \)-degree of \(\tilde{G} \) is \(\Delta_{\rho_{i_1i_2...i_r}}(\tilde{G}) = \bigvee \{d_{\rho_{i_1i_2...i_r}}(v) : v \in V \} \).
- Minimum \(\rho_{i_1i_2...i_r} \)-degree of \(\tilde{G} \) is \(\delta_{\rho_{i_1i_2...i_r}}(\tilde{G}) = \bigwedge \{d_{\rho_{i_1i_2...i_r}}(v) : v \in V \} \).

In the above example, \(d_{\rho_{12}}(x_0) = 1.3, d_{\rho_{12}}(x_1) = 1.4, d_{\rho_{12}}(x_2) = 1.1, d_{\rho_{12}}(x_3) = 0.4, d_{\rho_{12}}(x_4) = 1, d_{\rho_{12}}(x_5) = 0.6. \Delta_{\rho_{12}}(\tilde{G}) = 1.4, \delta_{\rho_{12}}(\tilde{G}) = 0.4. \)

Definition 2.7.5. \(\rho_i \)-size of \(\tilde{G} \) is \(S_{\rho_i}(\tilde{G}) = \sum_{(u,v) \in R_i} \rho_i(u,v) \).

- \(\rho_{i_1i_2...i_r} \)-size of \(\tilde{G} \) is \(S_{i_1i_2...i_r}(\tilde{G}) = \sum_{q=i_1:(u,v) \in \bigcup_{i=1}^{i_r} R_q} \rho_q(u,v) \).

Order of \(\tilde{G} \) is \(O(\tilde{G}) = \sum_{u \in V} \mu(u) \).
In the above example, \(S_{\rho_1}(\tilde{G}) = 1.7, S_{\rho_2}(\tilde{G}) = 1.2, S_{\rho_3}(\tilde{G}) = 0.6, \)
\(O(\tilde{G}) = 4.1. \)

Now we extend the concept of regularity in fuzzy graphs discussed by Nagoor Gani and Radha in [48] to fuzzy graph structures.

Definition 2.7.6. Let \(G \) be a graph structure and \(\tilde{G} \) be a fuzzy graph structure of \(G \). If \(d_{\rho_i}(v) = p \forall v \in V, \tilde{G} \) is said to be \(p - \rho_i\)-regular.
If \(d_{\rho_{12...r}}(v) = p \forall v \in V, \tilde{G} \) is said to be \(p - \rho_{12...r}\)-regular.

In the above example, \(\tilde{G} \) is 0.3 - \(\rho_3\)-regular and 0.6 - \(\rho_2\)-regular.

Now we prove some results on \(\rho_i\)-regularity and \(\rho_{12...r}\)-regularity.

Result \(\tilde{G} \) is \(p - \rho_i\)-regular iff \(\delta_{\rho_i}(\tilde{G}) = \Delta_{\rho_i}(\tilde{G}) = p. \)
\(\tilde{G} \) is \(p - \rho_{12...r}\)-regular iff \(\delta_{\rho_{12...r}}(\tilde{G}) = \Delta_{\rho_{12...r}}(\tilde{G}) = p. \)

Theorem 2.7.1. Let \(\tilde{G} \) be a fuzzy graph structure of \(G \) and \(\tilde{G}^* = (V, R_1, R_2, ..., R_k) \) be an odd \(\rho_i\)-cycle. \(\tilde{G} \) is \(\rho_i\)-regular iff \(\rho_i \) is a constant for all \(\rho_i\)-edges in \(R_i. \)

Proof. Let \(\rho_i \) be a constant function say \(\rho_i((u, v)) = c_i \forall (u, v) \in R_i. \)
\(\text{ie., } d_{\rho_i}(v) = 2c_i \forall v \in V. \) Therefore \(\tilde{G} \) is \(2c_i - \rho_i\)-regular.

Conversely, let \(\tilde{G} \) be a \(k - \rho_i\)-regular. Let \(e_1, e_2, ..., e_{2n+1} \) be \(\rho_i\)-edges in \(R_i \) and let
\(\rho_i(e_1) = k_1. \) Then \(\rho_i(e_2) = k - k_1, \rho_i(e_3) = k - (k - k_1) = k_1, ... \)
\(\text{ie., } \rho_i(e_s) = k_1 \text{ if } s \text{ is odd and } \rho_i(e_s) = k - k_1 \text{ if } s \text{ is even.} \)
If \(e_1 \) and \(e_{2n+1} \) are incident with \(u, \) \(d_{\rho_i}(u) = k_1 + k_1 = 2k_1, \)
\(d_{\rho_i}(u) = k \) and so \(k_1 = k/2. \) \(\text{ie., } d_{\rho_i}(e_s) = k/2 \forall s \text{ or } \rho_i \text{ is a constant in } R_i. \)

Note that the above result is true if \(\tilde{G}^* \) is replaced by
\((\text{supp}(\mu), \text{supp}(\rho_1), \text{supp}(\rho_2), ..., \text{supp}(\rho_k)). \)
Theorem 2.7.2. Let \tilde{G} be a fuzzy graph structure of G and $\tilde{G}^* = (V, R_1, R_2, \ldots, R_k)$ be an odd $\rho_{i_1 \ldots i_r}$-cycle. \tilde{G} is $\rho_{i_1 \ldots i_r}$-regular iff ρ_i is a constant for all ρ_i-edges $(i \in \{i_1, i_2, \ldots, i_r\})$ in $\bigcup_{i=i_1}^{i_r} R_i$.

Proof. Let ρ_i be a constant function say $\rho_i((u, v)) = c\forall(u, v) \in \bigcup_{i=i_1}^{i_r} R_i$.

ie., $d_{\rho_{i_1 \ldots i_r}}(v) = 2c\forall v \in V$. Therefore \tilde{G} is $2c - \rho_{i_1 i_2 \ldots i_r}$-regular.

Conversely, let \tilde{G} be a $k - \rho_{i_1 \ldots i_r}$-regular. Let $e_1, e_2, \ldots, e_{2n+1}$ be ρ_i-edges in $\bigcup_{i=i_1}^{i_r} R_i$.

Let $\rho_i(e_1) = k_1$ for some $i \in \{i_1, i_2, \ldots, i_r\}$. Then $\rho_i(e_2) = k - k_1$ for some $i \in \{i_1, i_2, \ldots, i_r\}.

e_1 and e_{2n+1} are incident with u, $d_{\rho_{i_1 \ldots i_r}}(u) = k_1 + k_1 = 2k_1$.

Therefore $d_{\rho_{i_1 \ldots i_r}}(e_s) = k/2\forall s$ ie., ρ_i is a constant in $\bigcup_{i=i_1}^{i_r} R_i$. \hfill \Box

Note that the above result is true if \tilde{G}^* is replaced by $(\text{supp}(\mu), \text{supp}(\rho_1), \text{supp}(\rho_2), \ldots, \text{supp}(\rho_k))$.

Theorem 2.7.3. Let \tilde{G} be a fuzzy graph structure of G and $\tilde{G}^* = (V, R_1, R_2, \ldots, R_k)$ be an even ρ_i-cycle. Then \tilde{G} is ρ_i-regular iff either ρ_i is a constant for all ρ_i-edges in R_i or alternate ρ_i-edges in R_i have the same membership value.

Proof. Let ρ_i be a constant in R_i. Then $d_{\rho_i}(v)$ is a constant for all $v \in V$.

If alternate ρ_i-edges in R_i have same membership values, $d_{\rho_i}(v)$ is a constant $\forall v \in V$.

So \tilde{G} is ρ_i-regular.

Let \tilde{G} be $k - \rho_i$-regular. Let e_1, e_2, \ldots, e_k be the ρ_i-edges of R_i. Then $\rho_i(e_j) = k$ if j is odd and $\rho_i(e_j) = k - k_1$ if j is even. If $k_1 = k - k_1$, ρ_i is a constant in R_i. If not, alternate ρ_i-edges in R_i have same membership value. \hfill \Box
Note that the above result is true if \tilde{G}^* is replaced by
$(\text{supp}(\mu), \text{supp}(\rho_1), \text{supp}(\rho_2), ..., \text{supp}(\rho_k))$.

Theorem 2.7.4. Let \tilde{G} be a fuzzy graph structure of G and $\tilde{G}^* = (V, R_1, R_2, ..., R_k)$ be an even $\rho_{i_1i_2...i_r}$-cycle. Then \tilde{G} is $\rho_{i_1i_2...i_r}$-regular iff either ρ_i is a constant for all ρ_i-edge in $\bigcup_{i=1}^{i_r} R_i$ or alternate ρ_i-edges in $\bigcup_{i=1}^{i_r} R_i$ have the same membership value.

Proof. Let $\rho_{i_1i_2...i_r}$ be a constant in $\bigcup_{i=1}^{i_r} R_i$. Then $d_{\rho_{i_1i_2...i_r}}(v)$ is a constant for all $v \in V$. If alternate ρ_i-edges in $\bigcup_{i=1}^{i_r} R_i$ have same membership values, $d_{\rho_{i_1i_2...i_r}}(v)$ is a constant $\forall v \in V$. So \tilde{G} is $\rho_{i_1i_2...i_r}$-regular.

Let \tilde{G} be $k - \rho_{i_1i_2...i_r}$-regular. Let $e_1, e_2, ..., e_k$ be the ρ_i-edges $(i \in \{i_1, i_2, ..., i_r\})$ of \tilde{G}^*. Then $\rho_i(e_j) = k$ if j is odd and $\rho_i(e_j) = k - k_1$ if j is even $(i \in \{i_1, i_2, ..., i_r\})$. If $k_1 = k - k_1$, ρ_i is a constant for all ρ_i-edges in $\bigcup_{i=1}^{i_r} R_i$. If not, alternate ρ_i-edges in $\bigcup_{i=1}^{i_r} R_i$ have same membership value. \square

Theorem 2.7.5. The ρ_i-size of a $p - \rho_i$-regular fuzzy graph structure \tilde{G} of G on $G^* = (V, R_1, R_2, ..., R_k)$ is $np/2$ where n is the number of vertices in V.

Proof. The ρ_i-size of \tilde{G} is $S_{\rho_i}(\tilde{G}) = \sum_{(u,v) \in R_i} \rho_i(u,v)$. $d_{\rho_i}(v) = p \forall v \in V$. So $\sum_{v \in V} d_{\rho_i}(v) = 2 \sum_{(u,v) \in R_i} \rho_i(u,v)$. ie., $2S_{\rho_i}(\tilde{G}) = \sum_{v \in V} d_{\rho_i}(v) = \sum_{v \in V} p = np$ where n is the number of vertices in V. Therefore $S_{\rho_i}(\tilde{G}) = np/2$. \square

Note that the above result is true if \tilde{G}^* is replaced by $(\text{supp}(\mu), \text{supp}(\rho_1), \text{supp}(\rho_2), ..., \text{supp}(\rho_k))$.
Theorem 2.7.6. The $\rho_{i_1i_2...i_r}$-size of a $p-\rho_{i_1i_2...i_r}$-regular fuzzy graph structure \tilde{G} of G on $\tilde{G}^* = (V, R_1, R_2, ..., R_k)$ is $np/2$ where n is the number of vertices in V.

Proof. The $\rho_{i_1i_2...i_r}$-size of \tilde{G} is $S_{\rho_{i_1i_2...i_r}}(\tilde{G}) = \sum_{(u,v) \in \bigcup_{q=i_1}^{i_r} R_q} \rho_q(u,v)$.

d_{\rho_{i_1i_2...i_r}}(v) = k \forall v \in V$. So $\sum_{v \in V} d_{\rho_{i_1i_2...i_r}}(v) = 2 \sum_{(u,v) \in \bigcup_{q=i_1}^{i_r} R_q} \rho_q(u,v)$.

ie., $2S_{\rho_{i_1i_2...i_r}}(\tilde{G}) = \sum_{v \in V} d_{\rho_{i_1i_2...i_r}}(v) = \sum_{q=i_1}^{i_r} \rho_q(u,v)$.

Therefore $S_{\rho_{i_1i_2...i_r}}(\tilde{G}) = np/2$.

Note that the above result is true if \tilde{G}^* is replaced by $(\text{supp}(\mu), \text{supp}(\rho_1), \text{supp}(\rho_2), ..., \text{supp}(\rho_k))$.

Theorem 2.7.7. Let \tilde{G} be a ρ_i-regular fuzzy graph structure of G where \tilde{G}^* is a ρ_i-cycle. Then \tilde{G} is a fuzzy ρ_i-cycle. It cannot be a fuzzy ρ_i-tree.

Proof. Let \tilde{G} be ρ_i-regular on ρ_i-cycle \tilde{G}^*. Then ρ_i is either a constant for all ρ_i-edges in R_i or alternate ρ_i-edges in R_i have the same membership values.

Therefore there does not exist unique ρ_i-edge (x, y) in R_i such that $\rho_i(x, y) = \land \rho_i(u, v)$.

ie., \tilde{G} is a fuzzy ρ_i-cycle. So it cannot be a fuzzy ρ_i-tree.

Note that the above result is true if \tilde{G}^* is replaced by $(\text{supp}(\mu), \text{supp}(\rho_1), \text{supp}(\rho_2), ..., \text{supp}(\rho_k))$.

Theorem 2.7.8. Let \tilde{G} be a $\rho_{i_1i_2...i_r}$-regular fuzzy graph structure of G where \tilde{G}^* is a $\rho_{i_1i_2...i_r}$-cycle. Then \tilde{G} is a fuzzy $\rho_{i_1i_2...i_r}$-cycle. It cannot be a fuzzy $\rho_{i_1i_2...i_r}$-tree.
Proof. Let \(\tilde{G} \) be \(\rho_{i_{1}i_{2}...i_{r}} \)-regular on \(\rho_{i_{1}i_{2}...i_{r}} \)-cycle \(\tilde{G}^{*} \). Then either \(\rho_{i_{2}...r} \) is either a constant for all \(\rho_{i} \)-edges in \(\bigcup_{i=i_{1}}^{i_{r}} R_{i} \) or alternate \(\rho_{i} \)-edges in \(\bigcup_{i=i_{1}}^{i_{r}} R_{i} \) have the same membership values.

Therefore there does not exist unique \(\rho_{i} \)-edge \((i \in \{i_{1}, i_{2}, ..., i_{r}\}) (x, y)\) such that \(\rho_{i}(x, y) = \land\{\rho_{i}(u, v)|\rho_{i}(u, v) > 0\} (i \in \{i_{1}, i_{2}, ..., i_{r}\})\). i.e., \(\tilde{G} \) is a fuzzy \(\rho_{i_{1}i_{2}...i_{r}} \)-cycle. So it cannot be a fuzzy \(\rho_{i_{1}i_{2}...i_{r}} \)-tree.

Note that the above result is true if \(\tilde{G}^{*} \) is replaced by \((\text{supp}(\mu), \text{supp}(\rho_{1}), \text{supp}(\rho_{2}), ..., \text{supp}(\rho_{k}))\).

Theorem 2.7.9. A \(\rho_{i} \)-regular fuzzy graph structure \(\tilde{G} \) of \(G \) on an odd \(\rho_{i} \)-cycle does not have a fuzzy \(\rho_{i} \)-bridge. Hence it does not have a fuzzy \(\rho_{i} \)-cut vertex.

Proof. Let \(\tilde{G} \) be \(\rho_{i} \)-regular on an odd \(\rho_{i} \)-cycle. Then \(\rho_{i} \) is a constant for all \(\rho_{i} \)-edges in \(R_{i} \) by Theorem 2.7.1. Hence removal of a \(\rho_{i} \)-bridge does not reduce the strength of \(\rho_{i} \)-connectedness between any pair of vertices. Hence \(\tilde{G} \) does not have a fuzzy \(\rho_{i} \)-bridge. A vertex is a \(\rho_{i} \)-cut vertex iff it is common vertex of two \(\rho_{i} \)-bridges by Theorem 2.5.3 and 2.5.4. Therefore \(\tilde{G} \) has no \(\rho_{i} \)-cut vertex. \(\square \)

Theorem 2.7.10. A \(\rho_{i_{1}i_{2}...i_{r}} \)-regular fuzzy graph structure \(\tilde{G} \) of \(G \) on an odd \(\rho_{i_{1}i_{2}...i_{r}} \)-cycle does not have a fuzzy \(\rho_{i_{1}i_{2}...i_{r}} \)-bridge. Hence it does not have a fuzzy \(\rho_{i_{1}i_{2}...i_{r}} \)-cut vertex.

Proof. Let \(\tilde{G} \) be \(\rho_{i_{1}i_{2}...i_{r}} \)-regular on an odd \(\rho_{i_{1}i_{2}...i_{r}} \)-cycle. Then \(\rho_{i} \) is a constant for all \(\rho_{i} \)-edges in \(\bigcup_{i=i_{1}}^{i_{r}} R_{i} \) by Theorem 2.7.2. Hence removal of a \(\rho_{i_{1}i_{2}...i_{r}} \)-bridge \((i \in \{i_{1}, i_{2}, ..., i_{r}\}) \) does not reduce the strength of \(\rho_{i_{1}i_{2}...i_{r}} \)-connectedness between any pair of vertices. Hence \(\tilde{G} \) does not have a fuzzy \(\rho_{i_{1}i_{2}...i_{r}} \)-bridge \((i \in \{i_{1}, i_{2}, ..., i_{r}\}) \). A vertex is a \(\rho_{i_{1}i_{2}...i_{r}} \)-cut vertex \((i \in \{i_{1}, i_{2}, ..., i_{r}\}) \) iff it is common vertex of two \(\rho_{i_{1}i_{2}...i_{r}} \)-bridges.
(i \in \{i_1, i_2, ..., i_r\}) by Theorem 2.6.3 and 2.6.4.

Therefore \(\tilde{G} \) has no \(\rho_{i_1 i_2 ... i_r} \)-cut vertex. \(\square \)

Theorem 2.7.11. Let \(\tilde{G} \) be a \(\rho_i \)-regular fuzzy graph structure of \(G \) on an even \(\rho_i \)-cycle \(\tilde{G}^* = (V, R_1, R_2, ..., R_k) \). Then either \(\tilde{G} \) does not have a fuzzy \(\rho_i \)-bridge or it has \(q_i / 2 \) fuzzy \(\rho_i \)-bridges where \(q_i = |R_i| \).

Proof. Let \(\tilde{G} \) be \(\rho_i \)-regular on an even \(\rho_i \)-cycle. Then either \(\rho_i \) is a constant for all \(\rho_i \)-edges in \(R_i \) or alternate \(\rho_i \)-edges in \(R_i \) have the same membership by Theorem 2.7.3.

Case 1: \(\rho_i \) is a constant for all \(\rho_i \)-edges in \(R_i \)

Removal of a \(\rho_i \)-edge does not reduce the strength of the \(\rho_i \)-path between any two vertices. Hence \(\tilde{G} \) does not have a \(\rho_i \)-bridge and so does not have a \(\rho_i \)-cut vertex by Theorem 2.5.3.

Case 2: Alternate \(\rho_i \)-edges in \(R_i \) have same membership

\(\tilde{G}^* \) is a \(\rho_i \)-cycle. \(\rho_i \)-edges with greater membership are the \(\rho_i \)-bridges of \(\tilde{G}^* \). There are \(q_i / 2 \) such \(\rho_i \)-edges. No vertex is common to two \(\rho_i \)-bridges. Hence it does not have a \(\rho_i \)-cut vertex by Theorem 2.5.3. \(\square \)

Theorem 2.7.12. Let \(\tilde{G} \) be a \(\rho_{i_1 i_2 ... i_r} \)-regular fuzzy graph structure of \(G \) on an even \(\rho_{i_1 i_2 ... i_r} \)-cycle \(\tilde{G}^* = (V, R_1, R_2, ..., R_k) \). Then either \(\tilde{G} \) does not have a fuzzy \(\rho_{i_1 i_2 ... i_r} \)-bridge or it has \(q_{i_1 i_2 ... i_r} / 2 \) fuzzy \(\rho_{i_1 i_2 ... i_r} \)-bridges where \(q_{i_1 i_2 ... i_r} = | \bigcup_{i=i_1}^{i_r} R_i | \).

Proof. Let \(\tilde{G} \) be \(\rho_{i_1 i_2 ... i_r} \)-regular on an even \(\rho_{i_1 i_2 ... i_r} \)-cycle. Then either \(\rho_i \) is a constant for all \(\rho_i \)-edges in \(\bigcup_{i=i_1}^{i_r} R_i \) or alternate \(\rho_i \)-edges in \(\bigcup_{i=i_1}^{i_r} R_i \) have the same membership by Theorem 2.7.4.
Case 1: \(\rho_{i_1i_2...i_r} \) is a constant for all \(\rho_i \)-edges in \(\bigcup_{i=1}^{i_r} R_i \)

Removal of a \(\rho_i \)-edge \((i \in \{i_1, i_2, ..., i_r\}) \) does not reduce the strength of the \(\rho_{i_1i_2...i_r} \)-path between any two vertices. Hence \(\tilde{G} \) does not have a \(\rho_{i_1i_2...i_r} \)-bridge and so does not have a \(\rho_{i_1i_2...i_r} \)-cut vertex by Theorem 2.6.3

Case 2: Alternate \(\rho_i \)-edges in \(\bigcup_{i=1}^{i_r} R_i \) have same membership

\(\tilde{G}^* \) is a \(\rho_{i_1i_2...i_r} \)-cycle. \(\rho_i \)-edges \((i \in \{i_1, i_2, ..., i_r\}) \) with greater membership are the \(\rho_{i_1i_2...i_r} \)-bridges of \(\tilde{G}^* \). There are \(q_{i_1i_2...i_r}/2 \) such \(\rho_i \)-edges \((i \in \{i_1, i_2, ..., i_r\}) \). No vertex is common to two \(\rho_{i_1i_2...i_r} \)-bridges. Hence it does not have a \(\rho_{i_1i_2...i_r} \)-cut vertex by Theorem 2.6.3.

Note that the above result is true if \(\tilde{G}^* \) is replaced by

\((\text{supp}(\mu), \text{supp}(\rho_1), \text{supp}(\rho_2), ..., \text{supp}(\rho_k)) \).

Theorem 2.7.13. A \(\rho_i \)-connected \(p-\rho_i \)-regular fuzzy graph structure \(\tilde{G} \) of \(G \) where \(p > 0 \) with number of vertices greater than or equal to 3, cannot have an end vertex of \(\rho_i \)-paths.

Proof. \(d_{\rho_i}(v) > 0 \forall v \in V \).

Therefore each vertex is adjacent to at least one vertex by a \(\rho_i \)-edge. If possible, let \(u \) be an end vertex of a \(\rho_i \)-path. Let \((u, v) \in R_i \). \(d_{\rho_i}(u) = p = \rho_i((u, v)) \). \(\tilde{G} \) is \(\rho_i \)-connected and number of vertices greater than or equal to 3. Therefore \(v \) is adjacent to some vertex \(w \neq u \) by a \(\rho_i \)-edge. \(\text{ie.}, d_{\rho_i}(v) \geq \rho_i((u, v)) + \rho_i((v, w)) > \rho_i((u, v)) \).

Therefore \(d_{\rho_i} > p \) which is a contradiction. Therefore \(\tilde{G} \) cannot have an end vertex of \(\rho_i \)-paths.

Theorem 2.7.14. A \(\rho_{i_1i_2...i_r} \)-connected \(p-\rho_{i_1i_2...i_r} \)-regular fuzzy graph structure where
\[p > 0 \text{ with number of vertices greater than or equal to 3, cannot have an end vertex of } \rho_{i_1i_2...i_r}\text{-paths.} \]

Proof. \[d_{\rho_{i_1i_2...i_r}}(v) > 0 \forall v \in V. \]

Therefore each vertex is adjacent to at least one vertex by a \(\rho_i\)-edge \((i \in \{i_1, i_2, ..., i_r\})\).

If possible, let \(u \) be an end vertex of a \(\rho_{i_1i_2...i_r}\)-path. Let \((u, v) \in \bigcup_{q=1}^{i_r} R_q\).

\[d_{\rho_{i_1i_2...i_r}}(u) = p = \rho_i((u, v)) \text{ for some } i \in \{i_1, i_2, ..., i_r\}. \]

\(\tilde{G} \) is \(\rho_{i_1i_2...i_r}\)-connected and number of vertices greater than or equal to 3. Therefore \(v \) is adjacent to some vertex \(w \neq u \) by a \(\rho_i\)-edge \((i \in \{i_1, i_2, ..., i_r\})\). i.e., \[d_{\rho_{i_1i_2...i_r}}(v) \geq \rho_i((u, v)) + \rho_i((v, w)) > \rho_i((u, v)) \text{ for some } i \in \{i_1, i_2, ..., i_r\}. \]

Therefore \(\tilde{G} \) cannot have an end vertex of \(\rho_{i_1i_2...i_r}\)-paths.

\[\square \]

2.8 Homomorphism and isomorphism

Isomorphism between two graph structures is introduced by Sampathkumar [61] as follows.

Definition 2.8.1. [61] Let \(G = (V, R_1, R_2, ..., R_m) \) and \(H = (V', R'_1, R'_2, ..., R'_n) \) be graph structures. Then \(G \) and \(H \) are isomorphic if \(m = n \) and there exists a bijection \(f : V \to V' \) and a bijection \(\psi : \{R_1, R_2, ..., R_m\} \to \{R'_1, R'_2, ..., R'_n\} \) such that for all \((u, v) \in V, uv \in R_i \) implies \((f(u), f(v)) \in \psi(R_i), i = 1, 2, ..., n. \)

Definition 2.8.2. [61] Two graph structures \(G = (V, R_1, R_2, ..., R_n) \) and \(H = (V, R_1, R_2, ..., R_n) \) on the same vertex set \(V \) are identical if there exists a bijection \(f : V \to V \) such that for all \(u \) and \(v \) in \(V, (u, v) \) is an \(R_i\)-edge in \(G \) implies \((f(u), f(v)) \) is an \(R_i\)-edge in \(H, 1 \leq i \leq n \) and their edge sets are equal.
Mordeson & Nair [45] defines isomorphism between fuzzy graphs as follows.

Definition 2.8.3. [45] Let \((\mu, \rho)\) and \((\mu', \rho')\) be fuzzy graphs of \(G\) and \(G'\) respectively. Let \(f\) be a one to one function of \(V\) onto \(V'\). Then

1. \(f\) is called a vertex-isomorphism of \((\mu, \rho)\) onto \((\mu', \rho')\) iff \(\forall v \in V, \mu(v) = \mu'(f(v))\).
2. \(f\) is called a line-isomorphism of \((\mu, \rho)\) onto \((\mu', \rho')\) iff \(\forall (u, v) \in X, \rho(u, v) = \rho'(f(u), f(v))\).

If \(f\) is a vertex-isomorphism and a line-isomorphism of \((\mu, \rho)\) onto \((\mu', \rho')\), then \(f\) is called an isomorphism of \((\mu, \rho)\) onto \((\mu', \rho')\).

We define isomorphism between two fuzzy graph structures as follows.

Definition 2.8.4. A fuzzy graph structure \(\tilde{G} = (\mu, \rho_1, \rho_2, \ldots, \rho_m)\) of
\(G = (V, R_1, R_2, \ldots, R_m)\) is \(\rho_i\)-isomorphic to \(\tilde{G}' = (\mu', \rho'_1, \rho'_2, \ldots, \rho'_n)\) of
\(G' = (V', R'_1, R'_2, \ldots, R'_n)\) iff \(m = n\) and there exists \(f_i : V \to V'\), a
bijection such that \(\mu(v) = \mu'(f_i(v)) \forall v \in V\) and \(\rho_i(u, v) = \rho'_i((f_i(u), f_i(v)))\).

In particular, if \(V = V'\) and \(\rho'_i = \rho_i\), we say that the above two \(\rho_i\)-isomorphic fuzzy graph structures are \(\rho_i\)-identical.

Definition 2.8.5. A fuzzy graph structure \(\tilde{G} = (\mu, \rho_1, \rho_2, \ldots, \rho_m)\) of
\(G = (V, R_1, R_2, \ldots, R_m)\) is \(\rho_{i_1 \ldots i_r}\)-isomorphic to \(\tilde{G}' = (\mu', \rho'_1, \rho'_2, \ldots, \rho'_n)\) of
\(G' = (V', R'_1, R'_2, \ldots, R'_n)\) iff \(m = n\) and there exists \(f_{i_1 \ldots i_r} : V \to V'\), a
bijection such that \(\mu(v) = \mu'(f_{i_1 \ldots i_r}(v)) \forall v \in V\) and \(\rho_i(u, v) = \rho'_i((f_{i_1 \ldots i_r}(u), f_{i_1 \ldots i_r}(v)))\), \(i_1 \leq i \leq i_r\).

In particular, if \(V = V'\) and \(\rho'_{i} = \rho_i, i_1 \leq i \leq i_r\), we say that the above two \(\rho_{i_1 \ldots i_r}\)-isomorphic fuzzy graph structures are \(\rho_{i_1 \ldots i_r}\)-identical.
Definition 2.8.6. A fuzzy graph structure \(\tilde{G} = (\mu, \rho_1, \rho_2, ..., \rho_m) \) of \(G = (V, R_1, R_2, ..., R_m) \) is isomorphic to \(\tilde{G}' = (\mu', \rho'_1, \rho'_2, ..., \rho'_n) \) of \(G' = (V', R'_1, R'_2, ..., R'_n) \) iff \(m = n \) and there exists \(f : V \to V' \), a bijection such that \(\mu(v) = \mu'(f(v)) \forall v \in V \) and \(\rho_i(u, v) = \rho'_i((f(u), f(v))) \), \(i = 1, 2, ..., m = n \).

In particular, if \(V = V' \) and \(\rho'_i = \rho_i \forall i = 1, 2, ..., m = n \), we say that the above two isomorphic fuzzy graph structures are identical.

Example 5
Let \(\tilde{G} = (\mu, \rho_1, \rho_2) \) with \(V = \{x_0, x_1, x_2, x_3, x_4, x_5\} \). Let \(\mu(x_0) = 0.8, \mu(x_1) = 0.9, \mu(x_2) = 0.6, \mu(x_3) = 0.5, \mu(x_4) = 0.6, \mu(x_5) = 0.7 \)
\(\rho_1(x_0, x_1) = 0.8, \rho_1(x_0, x_2) = 0.5, \rho_1(x_3, x_4) = 0.4, \)
\(\rho_2(x_1, x_2) = 0.6, \rho_2(x_4, x_5) = 0.5. \)

Let \(\tilde{G}' = (\mu', \rho'_1, \rho'_2) \) with \(V' = \{x'_0, x'_1, x'_2, x'_3, x'_4, x'_5\} \). Let \(\mu'(x'_0) = 0.8, \mu'(x'_1) = 0.9, \mu'(x'_2) = 0.6, \mu'(x'_3) = 0.5, \mu'(x'_4) = 0.6, \mu'(x'_5) = 0.7 \)
\(\rho'_1(x'_0, x'_1) = 0.8, \rho'_1(x'_0, x'_2) = 0.5, \rho'_1(x'_3, x'_4) = 0.4, \)
\(\rho'_2(x'_1, x'_2) = 0.6, \rho'_2(x'_4, x'_5) = 0.5. \)

Define \(f : V \to V' \) as \(f(x_0) = x'_0, ..., f(x_5) = x'_5 \).

Here \(f \) is an isomorphism from \(\tilde{G} \) to \(\tilde{G}' \). Now we introduce homomorphism between two fuzzy graph structures in line with the homomorphism on fuzzy graphs introduced by Bhutani, K.R. in [9].

Definition 2.8.7. A \(\rho_i \)-homomorphism of fuzzy graph structures \(\tilde{G} = (\mu, \rho_1, \rho_2, ..., \rho_k) \) and \(\tilde{G}' = (\mu', \rho'_1, \rho'_2, ..., \rho'_k) \) of graph structures \(G = (V, R_1, R_2, ..., R_k) \) and \(G' = (V', R'_1, R'_2, ..., R'_k) \) is a map \(f_i : V \to V' \) satisfying \(\mu(v) \leq \mu'(f_i(v)) \forall v \in V \) and \(\rho_i(u, v) \leq \rho'_i((f_i(u), f_i(v))) \forall u, v \in V \).
Definition 2.8.8. A $\rho_{i_1i_2...i_r}$-homomorphism of fuzzy graph structures

$\tilde{G} = (\mu, \rho_1, \rho_2, ..., \rho_k)$ and $\tilde{G}' = (\mu', \rho'_1, \rho'_2, ..., \rho'_k)$ of graph structures

$G = (V, R_1, R_2, ..., R_k)$ and $G' = (V', R'_1, R'_2, ..., R'_k)$ is a map

$f_{i_1i_2...i_r} : V \to V'$ satisfying $\mu(v) \leq \mu'(f_{i_1i_2...i_r}(v)) \forall v \in V$ and

$\rho_i(u, v) \leq \rho'_i((f_{i_1i_2...i_r}(u), f_{i_1i_2...i_r}(v))) \forall u, v \in V(\bigcup_{i=1}^r \text{supp}(\rho_i)), i \in \{i_1, i_2, ..., i_r\},

1 \leq r \leq k.$

Definition 2.8.9. A homomorphism of fuzzy graph structures

$\tilde{G} = (\mu, \rho_1, \rho_2, ..., \rho_k)$ and $\tilde{G}' = (\mu', \rho'_1, \rho'_2, ..., \rho'_k)$ of graph structures

$G = (V, R_1, R_2, ..., R_k)$ and $G' = (V', R'_1, R'_2, ..., R'_k)$ is a map $f : V \to V'$ satisfying

$\mu(v) \leq \mu'(f(v)) \forall v \in V$ and $\rho_i(u, v) \leq \rho'_i((f(u), f(v))) \forall u, v \in V$ for $i = 1, 2, ..., k$

We have so far investigated ρ_i-trees, ρ_i-forests, ρ_i-bridges, ρ_i-cutvertices, ρ_i-regularity, ρ_i-homomorphism and ρ_i-isomorphism. The analogue of a number of other basic concepts like fuzzy line graphs, domination, co-cycle space etc. remain to be studied. This we are not dealing with at present. We move on to study operations on fuzzy graph structures in the next chapter.