List of Figures

<table>
<thead>
<tr>
<th>Figure No</th>
<th>Title</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Chapter 1</strong></td>
<td><strong>Introduction</strong></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Melt Blending Process</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>Diagram for Dispersed and Distributed polymer blends</td>
<td>6</td>
</tr>
<tr>
<td>1.3</td>
<td>Polymer droplets at the time of melt blending</td>
<td>7</td>
</tr>
<tr>
<td>1.4</td>
<td>Compatibilization via block copolymer for immiscible blend</td>
<td>11</td>
</tr>
<tr>
<td>1.5</td>
<td>Reaction between graft copolymer and polyamide-6, 6</td>
<td>15</td>
</tr>
<tr>
<td>1.6</td>
<td>Maleic anhydride (MAH) grafting of LDPE in extruder</td>
<td>16</td>
</tr>
<tr>
<td>1.7</td>
<td>Schematic diagram of functioning of compatibilizer or coupling agent</td>
<td>18</td>
</tr>
<tr>
<td>1.8</td>
<td>PP Homopolymer + 30% Glass Fiber + 5% coupling agent (MAH-g-PP)</td>
<td>19</td>
</tr>
<tr>
<td>1.9</td>
<td>Classification of ionic polymers</td>
<td>21</td>
</tr>
<tr>
<td>1.10 (a-h)</td>
<td>Architecture of Ionomers</td>
<td>25</td>
</tr>
<tr>
<td><strong>Chapter 2</strong></td>
<td><strong>Experimental</strong></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Reactor for Solution process</td>
<td>36</td>
</tr>
<tr>
<td>2.2</td>
<td>Brabender Plastograph EC</td>
<td>43</td>
</tr>
<tr>
<td>2.3</td>
<td>Plastic Cutter</td>
<td>44</td>
</tr>
<tr>
<td>2.4</td>
<td>Injection Molding Machine</td>
<td>51</td>
</tr>
<tr>
<td><strong>Chapter 3</strong></td>
<td><strong>Results &amp; Discussion</strong></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>IR spectrum of Acrylic acid</td>
<td>58</td>
</tr>
<tr>
<td>3.2</td>
<td>IR spectrum for Zn ion monomer</td>
<td>59</td>
</tr>
<tr>
<td>3.3</td>
<td>IR spectrum for Ca ion monomer</td>
<td>60</td>
</tr>
<tr>
<td>3.4</td>
<td>IR spectrum for Na ion monomer</td>
<td>61</td>
</tr>
<tr>
<td>3.5</td>
<td>IR spectrum for Pure LDPE</td>
<td>64</td>
</tr>
<tr>
<td>3.6</td>
<td>IR spectrum for Zn-ionic-graft-copolymer</td>
<td>65</td>
</tr>
<tr>
<td>3.7</td>
<td>IR spectrum for Ca-ionic-graft-copolymer</td>
<td>66</td>
</tr>
<tr>
<td>3.8</td>
<td>IR spectrum for Na-ionic-graft-copolymer</td>
<td>67</td>
</tr>
<tr>
<td>3.9</td>
<td>$^{23}$Na-NMR for E-Ion1.144</td>
<td>69</td>
</tr>
</tbody>
</table>
3.10 EDS spectrum of Ca ionic-graft-copolymer
3.11 EDS spectrum of Zn ionic-graft-copolymer
3.12 EDS spectrum of Na ionic-graft-copolymer
3.13 Ca Mapping in Ca ionic-graft-copolymer
3.14 Zn Mapping in Zn ionic-graft-copolymer
3.15 Na Mapping in Na ionic-graft-copolymer
3.16 Tensile strength for HDPE/Nylon-6/E-Ion
3.17 Percentage Elongation for HDPE/Nylon-6/E-Ion
3.18 Tensile strength for HDPE/Nylon-6/E-Ion1.150
3.19 Percentage Elongation for HDPE/Nylon-6/E-Ion1.150
3.20 Impact Strength for HDPE/Nylon-6/E-Ion1.150
3.21 Hardness for HDPE/Nylon-6/E-Ion1.150
3.22 Tensile strength for HDPE/Nylon-6/SPC
3.23 Percentage Elongation for HDPE/Nylon-6/SPC
3.24 Impact Strength for HDPE/Nylon-6/SPC
3.25 Hardness for HDPE/Nylon-6/SPC
3.26a SEM photomicrographs for HDPE/Nylon-6(80/20)/E-Ion1.150 blends: {Figure i-v, 0%, 1%, 3%, 5%, & 10% of E-Ion1.150}
3.26b SEM photomicrographs for HDPE/Nylon-6(20/80)/E-Ion1.150 blends: {Figure i-v, 0%, 1%, 3%, 5%, & 10% of E-Ion1.150}
3.27a SEM photomicrographs for HDPE/Nylon-6 (80/20) blends: {Figure a-d & f, 0%, 1%, 3%, 5%, & 10% of SPC ionomer}
3.27b SEM photomicrographs for HDPE/Nylon-6 (20/80) blends: {Figure a-d, & f, 0%, 1%, 3%, 5%, & 10% of SPC ionomer}
3.28a TGA curve for HDPE/Nylon-6(80/20)/E-Ion1.150 blends
3.28b TGA curve for HDPE/Nylon-6(20/80)/E-Ion1.150 blends
3.29a TGA curve for HDPE/Nylon-6(80/20)/SPC blends
3.29b TGA curve for HDPE/Nylon-6(20/80)/SPC blends
3.30(a-c) Heating thermograms for Nylon-6 (a), E-Ion1.150 (b), SPC (c)
3.31(a-e) Heating thermograms for HDPE/Nylon-6(80/20)/E-Ion1.150 blends: {Figure a-e, 0%, 1%, 3%, 5%, & 10%}
3.32(a-e) Heating thermograms for HDPE/Nylon-6(20/80)/E-Ionl.150 blends: {Figure a-e, 0%, 1%, 3%, 5%, & 10%}
3.33(a-d) Heating thermograms for HDPE/Nylon-6(80/20)/SPC blends: {Figure a-d, 1%, 3%, 5%, & 10%}
3.34(a-d) Heating thermograms for HDPE/Nylon-6(20/80)/SPC blends: {Figure a-d, 1%, 3%, 5%, & 10%}
3.35 Torque curves for HDPE/Nylon-6 (80/20) blends: {Figure a-e, 0%, 1%, 3%, 5%, & 10% of E-Ionl.150}
3.36 Torque curves for HDPE/Nylon-6 (20/80) blends: {Figure a-e, 0%, 1%, 3%, 5%, & 10% of E-Ionl.150}
3.37 Torque curves for HDPE/Nylon-6 (80/20) blends: {Figure a-e, 1%, 3%, 5%, & 10% of SPC}
3.38 Torque curves for HDPE/Nylon-6 (20/80) blends: {Figure a-e, 1%, 3%, 5%, & 10% of SPC}
3.39 Dielectric Strength for HDPE/Nylon-6 (80/20 & 20/80) using E-Ionl.150 & SPC as compatibilizer
3.40 Insulation Resistance (Ω) for HDPE/Nylon-6 (80/20) using E-Ionl.150
3.41 Insulation Resistance (Ω) for HDPE/Nylon-6 (20/80) using E-Ionl.150
3.42 Insulation Resistance (Ω) for HDPE/Nylon-6 (80/20) using SPC
3.43 Insulation Resistance (Ω) for HDPE/Nylon-6 (20/80) using SPC
3.44 Arc resistance for HDPE/Nylon-6 (80/20, 20/80) blends using E-Ionl.150
3.45 Arc resistance for HDPE/Nylon-6 (80/20, 20/80) blends using SPC
3.46 Tensile strength for HDPE/PBT/E-Ionl.150
3.47 Percentage Elongation for HDPE/PBT/E-Ionl.150
3.48 Impact Strength for HDPE/PBT/E-Ionl.150
3.49 Hardness for HDPE/PBT/E-Ionl.150
3.50 Tensile strength for HDPE/PBT/SPC
3.51 Percentage Elongation for HDPE/PBT/SPC
3.52 Impact Strength for HDPE/PBT/SPC
3.53 Hardness for HDPE/PBT/SPC
3.54a SEM photomicrographs for HDPE/PBT (80/20) blends: 
   {Figure. a-e, 0%, 1%, 3%, 5%, & 10% of E-Ion1.150}
3.54b SEM photomicrographs for HDPE/PBT (20/80) blends: 
   {Figure. a-e, 0%, 1%, 3%, 5%, & 10% of E-Ion1.150}
3.55a SEM photomicrographs for HDPE/PBT (80/20) blends: 
   {Figure. a-e, 0%, 1%, 3%, 5%, & 10% of SPC ionomer}
3.55b SEM photomicrographs for HDPE/PBT (20/80) blends: 
   {Figure. a-e, 0%, 1%, 3%, 5%, & 10% of SPC ionomer}
3.56 Torque curves for HDPE/PBT (80/20) blends: 
   {Figure a-e, 0%, 1%, 3%, 5%, & 10% of E-Ion1.150}
3.57 Torque curves for HDPE/PBT (20/80) blends: 
   {figure a-e, 0%, 1%, 3%, 5%, & 10% of E-Ion1.150}
3.58 Torque curves for HDPE/PBT (80/20) blends: 
   {Figure a-e 1%, 3%, 5%, & 10% of SPC}
3.59 Torque curves for HDPE/PBT (20/80) blends: 
   {figure a-e, 0%, 1%, 3%, 5%, & 10% of SPC}
3.60 Dielectric Strength for HDPE/PBT (80/20 & 20/80) using E- 
   Ion1.150 & SPC as compatibilizer
3.61 Insulation Resistance (Ω) for HDPE/PBT (80/20) using E-
   Ion1.150
3.62 Insulation Resistance (Ω) for HDPE/PBT (20/80) using E-
   Ion1.150
3.63 Insulation Resistance (Ω) for HDPE/PBT (80/20) using SPC
3.64 Insulation Resistance (Ω) for HDPE/PBT (20/80) using SPC
3.65 Arc resistance for HDPE/PBT (20/80) blends using E-Ion1.150
   & SPC

**Chapter 4 Evaluation of HDPE/Nylon-6 & HDPE/PBT blends for insulation applications**

xii
4.1 CEE Connector, Single socket outlet, Plug and socket set, Connection unit, low voltage switchgear

Chapter 5 Conclusions
5.1 Photo of E-ion1.150