LIST OF FIGURES

Fig. 1.1. Industry breaks – up on application of enzymes 3
Fig. 1.2. Diagramatic representation of plant cell wall 4
Fig. 1.3. Structure of hardwood xylan 7
Fig. 1.4. (a). Structure of cereal xylan and the site of attack by xylanolytic enzymes (b). Hydrolysis of xylooligosaccharide by β-xylosidase. 13
Fig. 1.5. The three-dimensional structure of the Family 10 xylanase from Streptomyces lividans. 28
Fig. 1.6. The protein fold of the Family 11 xylanase from Chaetomium thermophilum. 31
Fig. 1.7. The three-dimensional structure of the Family 11 xylanase (1XNB) from Bacillus circulans. 38
Fig. 1.8. (a). Double displacement mechanism (b). Single displacement 39 40
Fig. 1.9. Computer graphics of the structure of the 'B. pumilus xylanase molecule. 44
Fig. 1.10. Evolutionary relationships amoung low mol. wt. xylanase based on the multiple alignments of amino acids sequencing. 52
Fig. 1.11. Digramatic representation of chemical treatment on paper pulp. 69
Fig. 1.12. Digramatic representation of Xylanase treatment on paper pulp. 70
Fig. 2.1. Xylan agar plate with 24 hour grown culture 88
Fig. 2.2. Plate assay for xylan hydrolysis 89
Fig. 2.3. Micrograph of B. pumilus culture 89
Fig. 2.4. Fermentation profile of B. pumilus in liquid medium. 92
Fig. 2.5. Time course of xylanase production by B. pumilus on agro industrial residues by SmF. 95
Fig. 2.6. Influences of initial medium pH 97
Fig. 2.7. Influences of temperature on xylanase production by B. pumilus. 98
Fig. 2.8. Influences of inoculum concentration on xylanase production. 100
Fig. 2.9. Effect of inducers on xylanase production.

Fig. 2.10. Xylanase production by B. pumilus on various agro industrial residues by SSF.

Fig. 2.11. Xylanase production by B. pumilus on various Agro industrial residues (Alkali and acid treated).

Fig. 3.1. Tank fermentor

Fig. 3.2. Effect of wheat bran particle size.

Fig. 3.3. Effect of initial medium pH

Fig. 3.4. Different concentration of glycerol and tween-80.

Fig. 3.5. Time course of endoxylanase production in optimize condition.

Fig. 3.6. Influence of different concentration of additives.

Fig. 3.7. Effect of different inorganic nitrogen sources

Fig. 3.8. Effect of different metal ions.

Fig. 3.9. Influence of different concentration of Na₂CO₃.

Fig. 3.10. Xylanase production by B. pumilus with different moisturizing agent.

Fig. 3.11. Comparison of xylanase production by B. pumilus in flask fermentor, tray fermentor and tank fermentor.

Fig. 3.12. The effect of different buffers and distilled water on effective extraction of xylanase from B. pumilus

Fig. 3.13. Effect of different buffers on the storage of xylanase from B. pumilus.

Fig. 4.1. Xylanase activity graph of (NH₄)₂SO₄ precipitated fractions from SSF.

Fig. 4.2. SDS-PAGE incorporated with 0.1% xylan, different (NH₄)₂SO₄ precipitated fractions.

Fig. 4.3. Native-PAGE of partially purified samples from SSF and SmF

Fig. 4.4. Elution profile of Xylanase on DEAE-Sepharose.

Fig. 4.5. SDS-PAGE

Fig. 4.6. Native-PAGE and Zymogram analysis.
Fig. 4.7. The 30 - 80% (NH₄)₂SO₄ precipitate applied to PIF analysis. 164
Fig. 4.8. Native - PAGE and zymogram analysis from PIF. 165
Fig. 4.9. SDS - PAGE from PIF. 165
Fig. 4.10. Effect of temperature on activity and stability of partially purified. 166
Fig. 4.11. Effect temperature on the activity of purified fractions. 167
Fig. 4.12. Temperature stability of fraction (0.01 M NaCl). 168
Fig. 4.13. Temperature stability of fraction (0.5 M NaCl). 168
Fig. 4.14. Temperature stability of fraction (1.0 M NaCl). 169
Fig. 4.15. Effect of pH on activity and stability of partially purified. 170
Fig. 4.16. Effect of pH on activity purified fraction - 0.01 M. 171
Fig. 4.17. Effect of pH on activity purified fraction - 0.5 M. 171
Fig. 4.18. Effect of pH on activity purified fraction - 1.0 M. 172
Fig. 4.19. Effect of pH on stability of purified fraction - 0.01 M. 172
Fig. 4.20. Effect of pH on stability of purified fraction - 0.5 M. 173
Fig. 4.21. Effect of pH on stability of purified fraction - 1.0 M. 174
Fig. 4.22. Effect of different metal ions on partially purified xylanase. 175
Fig. 4.23. Effect of metal ions on purified fractions of xylanase. 176
Fig. 4.24. Effect of solvents on the activity of partially purified xylanase. 177
Fig. 4.25. Effect of xylan concentration on activity / velocity of reaction on purified fraction (0.01 M NaCl). 178
Fig. 4.26. Effect of xylan concentration on activity / velocity of reaction on purified fraction (0.5 M NaCl). 179
Fig. 4.27. Lineweaver-Burk plot for xylanase fraction (0.01 M NaCl). 180
Fig. 4.28. Lineweaver-Burk plot for xylanase fraction (0.5 M NaCl). 181
Fig. 5.1. (a). Scanning electron micrograph of CM pulp untreated. 213
(b). xylanase treated (after peroxide treatment).
Fig. 5.2. (a). Micrograph of Chemical pulp untreated after chlorination 214
(b). treated with xylanase and chlorinated
(c). Micrograph of Chemical pulp untreated. (d). pulp 215
treated with xylanase (after chlorination and alkali extraction).
Fig. 5.3. (a). Scanning electron micrograph of waste paper untreated. 216
(b). treated with xylanase

Fig. 5. 4. (a). SEM of plantain fiber untreated (control) 217
(b). treated with crude xylanase

Fig. 5. 5. (a). SEM of coconut fiber untreated as control. 218
(b). treated with crude xylanase for three hour.

Fig. 5. 6. (a). Standard Xylose in HPLC column. 211
(b). Hydrolysis of polysaccharides estimated by HPLC. 212

Fig. 5. 7. Effect of xylanase from *B. pumilus* in 209
the saccharification of lignocelluloses material.