Chapter 1. *Introduction and review on xylanolytic enzyme systems, and its application*

1.0. INTRODUCTION
1.1.0. STRUCTURE OF PLANT CELL WALL
1.1.1. Classification of wood based on the xylan side chains
1.2.0. XYLANOLYTIC ENZYMES
1.2.1. Endo-β-1, 4 D- xylanase
1.2.2. β - Xylosidase
1.2.3. α-Arabinofuranosidases
1.2.4. α-D-glucuronidases
1.2.5. Esterases
1.2.5.1. Acetyl xylan esterases
1.2.5.2. Feruloyl esterases
1.3.0. SOURCES OF XYLANASE
1.3.1. Fungal Xylanase
1.3.2. Bacterial Xylanase
1.4.0. PROBLEMS RELATED TO FUNGAL XYLANASES
1.5.0. EXTREMOPHILIC XYLANASES
1.5.1. Psychrophiles
1.5.2. Thermophiles
1.5.3. Acidophiles
1.5.4. Alkaliphiles
1.6.0. CLASSIFICATION OF XYLANASE
1.6.1. Family 10
1.6.2. Family 11
1.6.3. Family 5
1.6.4. Family 8
1.6.5. Family 7 and 43
1.7.0. CATALYTIC MECHANISMS OF GLYCOSIDASE FAMILY
1.8.0. CHARACTERISTICS OF XYLANASE
 1.8.1. Molecular weight
 1.8.2. Amino acid sequencing
 1.8.3. Crystal Structure
 1.8.4. Glycoprotein nature of xylanase
 1.8.5. Xylanases: multiplicity and multiple-domains
1.9.0. MOLECULAR EVOLUTION OF XYLANASES
1.10.0. FACTORS INFLUENCING THE PRODUCTION OF XYLANASE
1.11.0. MODES OF FERMENTATION
1.12.0. PURIFICATION OF XYLANASES
1.13.0. MOLECULAR CLONING OF XYLANASE GENE
1.14.0. APPLICATION OF XYLANASE
1.15.0. IMPORTANCES OF XYLANASE IN PAPER PULP PROCESS
 1.15.1. Paper Making Process
 1.15.2. Pulping and Bleaching Process
 1.15.2.1. Sulphite pulp
 1.15.2.2. Kraft pulp (sulphate processes)
 1.15.3. Delignifying agents in paper industries and their environmental effect
 1.15.3.1. Elemental chlorine
 1.15.3.2. Chlorine dioxide
 1.15.3.3. Sodium hypochlorite
 1.15.3.4. Hydrogen peroxide
 1.15.3.5. Ozone
 1.15.3.6. Oxygen
1.16.0. IMPORTANCE OF THE TECHNOLOGY
 1.16.1. Biopulping
 1.16.2. Biobleaching
1.17.0. CRITERIA FOR THE SELECTION OF XYLANASE
1.18.0. CONCLUSION
1.19.0. OBJECTIVES AND SCOPE OF THE PRESENT INVESTIGATION
Chapter 2. Selection of bacterial strain, comparison of different mode of fermentations on endoxylanase production and selection of suitable substrate for SSF

2.0. INTRODUCTION

2.1.0. MATERIALS AND METHODS

2.1.1. Selection of microorganism
2.1.2. Qualitative screening
2.1.3. Quantitative screening
2.1.4. Pre inoculum preparation
2.1.5. Production of xylanase
2.1.6. Identification of Bacteria
2.1.7. Enzyme profile in SmF and SSF
2.1.8. Analytical procedures

2.1.8.1. pH
2.1.8.2. Moisture content
2.1.8.3. Reducing sugar
2.1.8.4. Total soluble protein
2.1.8.5. Endoxylanase assay
2.1.8.6. Cellulase assay
2.1.8.6.1. CMC ase
2.1.8.6.2. FP ase
2.1.8.7. Protease assay
2.1.8.8. β-Xylosidase assay

2.2.0. Fermentation experiments

2.2.1. Pre inoculum preparation for SmF and SSF

2.2.2. SUBMERGED FERMENTATION

2.2.3. Effect of different carbon sources
2.2.4. Effect of pH
2.2.5. Effect of temperature
2.2.6. Effect of inoculum sizes
2.2.7. Effect of inducers

2.3.0. SOLID-STATE FERMENTATION

2.3.1. Enzyme production using agro-industrial residues
2.3.2. Effect of pretreatment of agro industrial residues
2.4.0. RESULTS AND DISCUSSION

2.4.1. Importance of alkaline thermosable microorganism
2.4.2. Screening for xylanolytic potential
2.4.3. Detection of production by plate assay
2.4.4. Culture characteristics of *Bacillus pumilus*
2.4.5. Growth in liquid medium
2.4.6. Pigment production
2.4.7. Morphological characteristics
2.4.8. Taxonomy of *Bacillus pumilus*
2.4.9. Growth profile of *Bacillus pumilus*

2.5.0. SUBMERGED FERMENTATION

2.5.1. Effect of different carbon sources
2.5.2. Effect of pH on xylanase production
2.5.3. Effect of temperature on production
2.5.4. Effect of inoculum sizes
2.5.5. Effect of inducers in xylanase production

2.6.0. SOLID-STATE FERMENTATION

2.6.1. Xylanase production using agro industrial residues
2.6.2. Effect of pretreatment on xylanase production

2.7.0. ENZYME PROFILE IN SSF AND SMF

2.8.0. CONCLUSION

Chapter 3. *Culture and nutritional parameter optimization for enhanced production of endoxylanase by Bacillus pumilus using SSF.*

3.0. INTRODUCTION

3.1.0. MATERIALS AND METHODS

3.1.1. Xylanase production by SSF and enzyme extraction

3.2.0. CULTURE CONDITION OPTIMIZATION

3.2.1. Effect of particle size of wheat bran
3.2.2. Effect of initial moisture level
3.2.3. Effect of media pH, temperature and inoculum size

3.3.0. NUTRITIONAL PARAMETER OPTIMIZATION

3.3.1. Effect of glycerol and tween-80
3.3.2. Effect of easily metabolizable sugars
3.3.3. Effect of phosphorus salts
3.3.4. Effect of nitrogen sources
3.3.5. Effect of metal ions
3.3.6. Effect of Sodium carbonate

3.4.0. MOISTURIZING AGENT

3.5.0. SCALE UP STUDIES IN SSF
3.5.1. Cultivation in enamel trays
3.5.2. Fermentation in Tank fermentor

3.6.0. CRUDE ENZYME EXTRACTION BUFFER ESTIMATION
3.6.1. Storage stability of crude extract

3.7.0. RESULTS AND DISCUSSION
3.7.1. Effect of particle size of wheat bran
3.7.2. Effect of initial moisture level
3.7.3. Effect of medium pH, temperature and inoculum size
3.7.4. Effect of glycerol and tween -80
3.7.5. Effect of easily metabolisable sugars
3.7.6. Effect of phosphorus salts
3.7.7. Effect of nitrogen sources
3.7.8. Effect of metal ions
3.7.9. Effect of Sodium carbonate
3.7.10. Different Moisturizing agent
3.7.11. Xylanase production in enamel trays
3.7.12. Extraction buffer estimation
3.7.13. Storage stability

3.8.0. CONCLUSION

Chapter 4. Purification and characterization of xylanase from B. pumilus produced by SSF

4.0. INTRODUCTION

4.1.0. MATERIALS AND METHODS
4.1.1. Crude enzyme preparation
4.1.2. Fractional ammonium sulphate precipitation
4.1.3. Concentration of enzyme by Ultrafiltration
4.1.4. Purification by Ion exchange chromatography
4.1.5. Purification of xylanase by isoelectric focusing
4.1.6. Gel electrophoresis (SDS - PAGE)
4.1.8. Native – PAGE electrophoresis and zymogram preparation
4.1.7. Zymogram analysis

4.2.0. CHARACTERIZATION STUDIES

4.2.1. Effect of temperature on partially purified and purified xylanase
4.2.2. Effect of pH on partially purified and purified xylanase
4.2.3. Effect of metal ions on partially purified and purified xylanase
4.2.4. Effect of substrate concentration on the purified xylanase
4.2.5. Effect of organic solvents on partially purified enzyme

4.3.0. RESULTS AND DISCUSSION

4.4.0. CONCENTRATION OF CRUDE ENZYME
4.4.1. Concentration by (NH₄)₂SO₄ precipitation
4.4.2. Concentration by Ultrafiltration

4.5.0. PURIFICATION BY ION EXCHANGE CHROMATOGRAPHY

4.6.0. PAGE ELECTROPHORESIS AND ZYMOGRAM ANALYSIS

4.7.0. PURIFICATION OF XYLANASE BY ISOELECTRIC FOCUSING

4.8.0. CHARACTERISATION OF XYLANASE
4.8.1. Effect of temperature on partially purified and purified xylanase
4.8.2. Effect of pH on partially purified and purified xylanase
4.8.3. Effect of metal ions on partially purified and purified xylanase
4.8.4. Effect of solvents on partially purified enzyme
4.8.5. Effect of substrate concentration on the purified xylanase

4.9.0. CONCLUSION

Chapter 5. *Xylanase from alkalophilic B. pumilus, its effects on kraft pulp as a biobleaching agent, in recycling of paper, in plant fiber separation and Saccharification.*

5.0. INTRODUCTION

5.1.0. MATERIALS AND METHODS
5.1.1.0. Specificity of the culture
5.1.2.0. Kraft pulp preparation
5.1.3.0. Xylanase application on kraft pulp
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.4.0</td>
<td>Optimization of condition for xylanase treatment</td>
</tr>
<tr>
<td>5.1.4.1</td>
<td>Chemi – Mechanical pulp</td>
</tr>
<tr>
<td>5.1.4.2</td>
<td>Chemical pulp</td>
</tr>
<tr>
<td>5.1.4.3</td>
<td>Optimization of ClO₂, Peroxide and Caustic soda dose in Chemical pulp bleaching</td>
</tr>
<tr>
<td>5.1.5</td>
<td>Release of chromophoric material and reducing sugar from pulps</td>
</tr>
<tr>
<td>5.1.6</td>
<td>Effect of Kappa Number</td>
</tr>
<tr>
<td>5.1.7</td>
<td>Scanning electron micrograph (SEM)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.0</td>
<td>ENZYMATIC TREATMENT OF CARTON AND OFFICE PAPER</td>
</tr>
<tr>
<td>5.3.0</td>
<td>CRUDE ENZYME IN THE PLANT FIBER SEPARATION</td>
</tr>
<tr>
<td>5.4.0</td>
<td>HPLC ANALYSIS OF THE HYDROLYSIS PRODUCTS OF POLYSACCHARIDES</td>
</tr>
<tr>
<td>5.5.0</td>
<td>SACCHARIFICATION OF LIGNOCELLULOSIC SUBSTRATES</td>
</tr>
<tr>
<td>5.6.0</td>
<td>RESULTS AND DISCUSSION</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6.1</td>
<td>Optimization of Xylanase bleaching for CM pulp</td>
</tr>
<tr>
<td>5.6.2</td>
<td>Optimization of xylanase treatment conditions for CP</td>
</tr>
<tr>
<td>5.6.3</td>
<td>Degree of solubilisation and Kappa No. reduction of pulp</td>
</tr>
<tr>
<td>5.6.4</td>
<td>Optimization of ClO₂, Peroxide and Caustic soda dose in Chemical pulp bleaching</td>
</tr>
<tr>
<td>5.6.5</td>
<td>Scanning electron micrograph (SEM)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.7.0</td>
<td>ENZYME APPLICATION IN RECYCLING OF WASTE PAPER</td>
</tr>
<tr>
<td>5.8.0</td>
<td>EFFECT OF Xylanase ENZYME ON PLANT FIBER</td>
</tr>
<tr>
<td>5.9.0</td>
<td>HYDROLYSIS PRODUCTS OF POLYSACCHARIDES</td>
</tr>
<tr>
<td>5.10.0</td>
<td>SACCHARIFICATION OF LIGNOCELLULOSIC SUBSTRATES</td>
</tr>
<tr>
<td>5.11.0</td>
<td>CONCLUSION</td>
</tr>
</tbody>
</table>

Chapter 6. Summary and Conclusion

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0.0</td>
<td>SUMMARY</td>
</tr>
<tr>
<td>6.2.0</td>
<td>CONCLUSION</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.0</td>
<td>BIBLIOGRAPHY</td>
</tr>
</tbody>
</table>