TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Acknowledgements</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>(iii)</td>
</tr>
</tbody>
</table>

Chapter 1 Introduction

1.1 General Introduction | 2 |
1.2 MHD Generator power system integration | 7 |
1.3 Scope and outline of the thesis | 11 |

Chapter 2 Digital Simulation of MHD Generator Inverter Link

2.1 Introduction | 19 |
2.2 Simulation of an MHD Generator | 22 |
2.2.1 Simplifying assumptions | 22 |
2.2.2 MHD equations | 25 |
2.2.3 Per unit base quantities on MHD side | 26 |
2.3 Simulation of inverter | 27 |
2.3.1 Relations between d.c. and a.c. quantities | 29 |
2.3.2 Per unit base quantities on a.c. side | 31 |
2.3.3 Simulation with square wave inverter | 31 |
2.4 Simulation with filters | 32 |
2.4.1 Location and type of filters | 33 |
2.4.2 Modified power flow equations with filters | 34 |
2.5 Computational procedure | 37 |
2.6 Results of digital simulation | 38 |
2.6.1 Variation in electrical parameters with phase shift | 38 |

(v)
2.6.2 Variation of real and reactive power with changes in duct voltage and resistance as a function of phase shift 44

2.6.3 Variation of real and reactive power with MHD duct current 47

2.6.4 Variation of real and reactive power with changes in internal resistance from operating point 47

2.6.5 Variation of real and reactive power with changes in duct voltage from operating point 47

2.6.6 Control of power to a.c. system 50

2.6.7 Change in electrical parameters with other fixed phase shifts 55

2.6.8 Power control with the output parameters 55

2.7 Summary and conclusion 56

Chapter 3 Experimental Verification and Design Considerations

3.1 Introduction 59

3.2 Experimental setup 60

3.2.1 MHD-Generator-inverter link simulation data 62

3.2.2 Simulation of MHD generator 64

3.2.3 Interconnection with infinite bus 66

3.2.4 Phase shift control arrangement 66

3.2.5 Measurement of electrical quantities 66

3.3 Result of experimental study 68

3.3.1 Variation in electrical parameters with phase shift 68

3.3.2 Variation of real and reactive power with changes in duct voltage and resistance as a function of phase shift, 72

(vi)
3.3.3 Variation of real power with change in internal resistance from operating point

3.3.4 Variation of real power with change in duct voltage from operating point.

3.3.5 Power control for changes in internal resistance

3.3.6 Power control for changes in duct voltage

3.3.7 Change in electrical parameters with other phase shifts

3.3.8 Power control with output parameters

3.4 Design of minimum cost filters

3.4.1 Filter calculations

3.4.2 Results of digital simulation with filter

3.5 Design of three phase auxiliary commutated Mo Murray inverter

3.5.1 Design specifications

3.5.2 Selection of optimum value of commutating capacitance and inductance \((C_c \text{ and } L_c)\)

3.5.3 Selection of main device \((T_{1M} \text{ and } T_{2M})\)

3.5.4 Selection of auxiliary device \((T_{1A} \text{ and } T_{2A})\)

3.5.5 Selection of feedback diodes \((D_{1F} \text{ and } D_{2F})\)

3.5.6 Selection of clamping diodes \((D_{1C} \text{ and } D_{2C})\)

3.5.7 Selection of line inductors and damping resistors \((L_g \text{ and } R_o)\)

3.5.8 Selection of filter capacitor \((C_{in})\)

3.5.9 Selection of snubber components

(vii)
3.6 Inductor design
 3.6.1 Brooks coil design
 3.6.2 Flat spiral strip design
3.7 Design consideration for safe inverter operation
 3.7.1 Variation in peak current with phase shift
 3.7.2 Variation in peak current for changes in MHD duct internal resistance
 3.7.3 Increase in peak current for changes in duct voltage
3.8 Water fuse protection for power thyristor
 3.8.1 Fuse protection in inverter circuits
 3.8.2 Behaviour of an ordinary fuse wire in water
 3.8.3 Experimental verification and results
3.9 Summary and conclusion

Chapter 4 Feedback Controller Design, Fabrication and Testing for MHD duct Power Control
 4.1 Introduction
 4.2 Description of the system
 4.3 Digital simulation of the controller
 4.3.1 Computational procedure
 4.3.2 Transient response of the simulated system
 4.4 Analogue simulation of PI controller
 4.4.1 Transient response of the system with PI controller
 4.5 Analogue simulation of PID controller
 4.5.1 Transient response of the system with PID controller
4.6 Design and fabrication of feedback controller

4.6.1 Transient response of the system with fabricated feedback controller

4.7 MHD duct power control

4.7.1 Power control for changes in internal resistance

4.7.2 Power control for changes in duct voltage

4.8 Discussion and comparison of the results

4.9 Summary and conclusion

Chapter 5 Time Dependent Modelling of MHD Generator and Transient Response of the MHD Generator Inverter Link

5.1 Introduction

5.2 MHD fluid flow equations

5.3 Quasi one dimensional flow equations

5.4 Theoretical model of the MHD generator

5.5 Electrical characteristics of the MHD generator

5.5.1 Data for the calculation of electrical characteristics

5.6 Control of power to a.c. system

5.7 Transient response of the MHD generator inverter link

5.7.1 Derivation of equations for transient analysis

5.7.2 Transient response due to step increase in load

5.7.3 Transient response due to step decrease in load
5.7.4 Transient response due to short circuit
5.7.5 Transient response due to open circuit
5.7.6 Transient response due to d.c. input filter

5.8 Summary and conclusion

Chapter 6 Summary and Recommendations
6.1 Summary of the main findings of the thesis
6.2 Recommended further studies

References

Appendix A Computer program listings and tabulated results
Appendix B Detailed diagram of experimental setup, tabulated experimental results and design data sheets
Appendix C Design data sheets
Appendix D Computer program listing, tabulated results and graphs

Curriculum vitae