6.1 Introduction:

Fuzzy topological vector spaces are introduced by A. K. Katsaras and D. B. Liu [K; L]. In 1981, Katsaras [kat], changed the definition of fuzzy topological vector spaces. After a considerable period of time, J. J. Buckley and Aimien Yan [B; A] opened the way towards the development of fuzzy topological vector space by introducing the notion of fuzzy vector space in a new manner. In this chapter, we establish a relation between fuzzy topological vector spaces and topological group. Also some properties of fuzzy topological vector spaces are discussed.

6.2 Fuzzy topological vector space and topological group

Theorem 6.2.1

Let \mathcal{X} be a fuzzy vector space and let τ be a topology on \mathcal{X}. Then τ is compatible with the vector space structure of \mathcal{X}, that is, addition and scalar multiplication are continuous if and only if
(i) \(\tau \) is compatible with the additive group structure of \(\bar{X} \)

(ii) for each \(a \in R \), the mapping \([u] \to [au] \), (\([u] \in \bar{X} \)) is continuous at

\([u] = \bar{0} \)

(iii) for each \([u] \in \bar{X} \), the mapping \(a \to [au] \), (\(a \in R \)) is continuous at

\(a = 0 \)

(iv) the mapping \((a, [u]) \to [au] \), (\(a \in R, [u] \in \bar{X} \)) is continuous at

\((0, \bar{0}) \).

Proof:

Assume that \(\tau \) is compatible with vector space structure. Then conditions (ii)–(iv) follows trivially from the definition of a fuzzy topological vector space over \(R \) and condition (i) results from the continuity of \(([u], [v]) \to [u] + [v] \) and \([u] \to (-1)[u] = [-u] \).

Conversely, let \(a_0 \in R \), \([u_0] \in \bar{X} \), the problem is to show that \((a, [u]) \to [au] \) is continuous at \((a_0, [u_0])\). Let \(U \) be a neighborhood
of $\bar{0}$, then $[a_0 u_0] + U$ is a typical neighborhood of $[a_0 u_0]$. We seek neighborhood A, W of $0, \bar{0}$ such that

$$ (a_0 + A)([u_0] + W) \subseteq [a_0 u_0] + U. $$

Let V be a neighborhood of $\bar{0}$ such that

$$ V + V + V \subseteq U. $$

By (iii), there exists a neighborhood A_1 of 0 such that $A_1[u_0] \subseteq V$. By (ii), there exists a neighborhood W_1 of $\bar{0}$ such that $a_0 W_1 \subseteq V$. By (iv), there exists a neighborhood A_2 of 0 and a neighborhood W_2 of $\bar{0}$ such that $A_2 W_2 \subseteq V$.

Let $A = A_1 \cap A_2$ and $W = W_1 \cap W_2$, then evidently $A[u_0] \subseteq V$, $a_0 W \subseteq V$ and $AW \subseteq V$. Hence by distributivity,

$$ (a_0 + A)([u_0] + W) \subseteq [a_0 u_0] + A[u_0] + a_0 W + AW $$

$$ \subseteq [a_0 u_0] + V + V + V $$

$$ \subseteq [a_0 u_0] + U. $$

Hence the result.
Definition 6.2.2

If \mathcal{X} is fuzzy vector space, a homothetic mapping is a mapping of the form $[u] \rightarrow [au] + [v]$, $([v] \in \mathcal{X})$. Where $a \in \mathbb{R}$ and $[v] \in \mathcal{X}$ are fixed. If $a \neq 0$, such mapping is bijective with a homothetic inverse mapping namely, $[u] \rightarrow [a^{-1}u] - [a^{-1}v]$.

Note 6.2.3

In a topological group, the translation mapping plays an important role; in a fuzzy topological vector space; the mapping that play the analogous role are homotheties.

Theorem 6.2.4

In a fuzzy topological vector space every non-constant homothety is a homeomorphism.

Proof:

Define the homothety, $f([u]) = [au] + [v]$, where $a \neq 0$. Since the inverse of a homothety is also a homothety, it is enough to show that f is continuous and this is evident from the factorization $[u] \rightarrow [au] \rightarrow [au] + [v]$.
Note 6.2.5

One consequence of this proposition is that every topology \(\tau \) on a fuzzy topological vector space is translation invariant. A set \(E \subseteq \overline{X} \) is open if and only if each of its translates \([u] + E\) is open. Then \(\tau \) is completely determined by any local base. A local base of a fuzzy topological vector space is thus a collection \(\mathcal{B} \) of neighborhoods of \(\overline{0} \) such that every neighborhood of \(\overline{0} \) contains a member of \(\mathcal{B} \). The open sets of \(\overline{X} \) are then precisely those that are unions of translates of members of \(\mathcal{B} \).

Theorem 6.2.6

If \(\overline{X} \) is a fuzzy topological vector space over \(\mathbb{R} \) and \(\overline{M} \) fuzzy vector sub space over \(\mathbb{K} \) then \(\overline{M} \), with the relative topology is also a fuzzy topological vector space over \(\mathbb{R} \).

Proof:

The restriction of the continuous mappings \(([u], [v]) \rightarrow [u] + [v] \) and \((\alpha, [u]) \rightarrow [\alpha u] \), to \(\overline{M} \times \overline{M} \) and \(\mathbb{R} \times \overline{M} \) respectively are continuous for the relative topology of \(\overline{M} \).
Theorem 6.2.7

In a fuzzy topological vector space, the closure of a fuzzy vector subspace is a fuzzy vector subspace.

Proof:

If \(\overline{M} \) is a fuzzy vector subspace of a fuzzy topological vector space over \(\mathbb{R} \), then the continuous mapping \(([u], [v]) \rightarrow [u] + [v], \) which maps \(\overline{M} \times \overline{M} \rightarrow \overline{M} \) also maps \(\text{clo}(\overline{M} \times \overline{M}) = \text{clo} \overline{M} \times \text{clo} \overline{M} \rightarrow \text{clo} \overline{M} \), then \([u] \in \text{clo} \overline{M} \) whenever \([u], [v] \in \text{clo} \overline{M} \). Similarly the continuous mapping \((a, [u]) \rightarrow [au], \) which maps \(\mathbb{R} \times \overline{M} \rightarrow \overline{M} \) also maps

\[
\text{clo}(\mathbb{R} \times \overline{M}) = \mathbb{R} \times \text{clo} \overline{M} \rightarrow \text{clo} \overline{M}.
\]

i.e.; \([au] \in \text{clo} \overline{M}, \forall a \in \mathbb{R} \) and \([u] \in \text{clo} \overline{M} \).

Theorem 6.2.8

In a fuzzy topological vector space \(\overline{X} \) over \(\mathbb{R} \)

(a) every neighborhood of \(\overline{0} \) contains a balanced neighborhood of \(\overline{0} \) and

(b) every convex neighborhood of \(\overline{0} \) contains a balanced convex neighborhood of \(\overline{0} \).
Proof : (a)

Suppose U is a neighborhood of \(\bar{0} \) in \(\bar{X} \). Since scalar multiplication is continuous, there is a \(\delta > 0 \) and there is a neighborhood \(V \) of \(\bar{0} \) in \(\bar{X} \) such that \(aV \subset U \) whenever \(|a| < \delta \).

Let \(W \) be the union of all these sets \(aV \). Then \(W \) is a neighborhood of \(\bar{0} \), \(W \) is balanced and \(W \subset U \).

Proof : (b)

Suppose U is a convex neighborhood of \(\bar{0} \) in \(\bar{X} \). Let \(A = \bigcap aU \), where \(-1 \leq a \leq 1\). Choose \(W \) as in part (a). Since \(W \) is balanced, \(a^{-1}W = W \), when \(|a| = 1 \). Hence \(W \subset aU \). Thus \(W \subset A \), which implies that the interior of \(A \) is a neighborhood of \(\bar{0} \). Clearly, interior of \(A \) is a subset of \(U \). Being an intersection, with convex sets, \(A \) is convex. Hence, so is intA. To prove that intA is a neighbourhood with desired property, we have to show that intA is balanced; for this it is enough to prove that \(A \) is balanced.

Choose \(c \) such that \(0 \leq c \leq 1 \), then

\[
 cA = \bigcap_{|a|-1} caU.
\]

Since \(aU \) is a convex set that contains \(\bar{0} \), we have

\[
 caU \subset aU.
\]
Thus \(cA \subset A \). Which completes the proof.

Theorem 6.2.9

Suppose \(V \) is a neighborhood of \(\vec{0} \) in a fuzzy topological vector space over \(\mathbb{R} \).

(a) If \(0 < r_1 < r_2 < ... \) and \(r_n \rightarrow \infty \) as \(n \rightarrow \infty \), then

\[
\overline{X} = \bigcup_{n=1}^{\infty} r_n V.
\]

(b) Every compact subset \(\overline{K} \) of \(\overline{X} \) is bounded.

(c) If \(\delta_1 > \delta_2 > ... \) and \(\delta_n \rightarrow 0 \) as \(n \rightarrow \infty \) and if \(V \) is bounded, then the collection \(\{\delta_n V, n=1,2,3,...\} \) is a local base for \(\overline{X} \).

Proof: (a)

Fix \([u] \in \overline{X} \). Since \(a \rightarrow [au] \) is a continuous mapping of \(\mathbb{R} \rightarrow \overline{X} \), then the set of all \(a \) with \([au] \in V \) is open, contains \(\vec{0} \), hence contains \(\frac{1}{r_n} \) for all large \(n \). Thus \(\frac{1}{r_n} [u] \in V \) or \([u] \in r_n V \), for large \(n \).

Proof: (b)

Let \(W \) be a balanced neighbourhood of \(\vec{0} \) such that \(W \subset V \).

Then by (a)

\[
\overline{K} \subset \bigcup_{n=1}^{\infty} nW.
\]
Since \bar{K} is compact, there are integers $n_1 < n_2 < \ldots < n_s$ such that

$$\bar{K} \subset n_1W \cup n_2W \cup \ldots \cup n_sW = n_sW.$$

The equality holds since W is balanced. If $t > n_s$, it follows that

$$\bar{K} \subset tW \subset tV.$$

Proof: (c)

Let U be a neighborhood of $\bar{0}$ in \bar{X}. If V is bounded, there exists $\delta > 0$ such that $V \subset tU$, $\forall \ t > s$. If n is so large that $\delta_n < 1$, it follows that $V \subset \left(\frac{1}{\delta_n}\right) U$. Hence U actually contains all but finitely many of the sets δ_nV.

Note 6.2.10

This property is often described as neighborhoods of $\bar{0}$ are absorbing.

Theorem 6.2.11

Let \bar{X} and \bar{Y} be fuzzy topological vector spaces over \mathbb{R}. If $\Lambda: \bar{X} \to \bar{Y}$ is linear and continuous at $\bar{0}$, then Λ is continuous. In fact, Λ is uniformly continuous in the following sense: To each
neighborhood W of \bar{o} in \bar{V} there corresponds a neighborhood V of \bar{o} in \bar{X} such that $[v] - [u] \in V \Rightarrow \Lambda [v] - \Lambda [u] \in W$.

Proof:

Once W is chosen, the continuity of Λ at \bar{o} shows that $\Lambda V \subseteq W$ for some neighborhood V of \bar{o}. If $[v] - [u] \in V$, the linearity of Λ shows that $\Lambda [v] - \Lambda [u] = \Lambda ([v] - [u]) \in W$. Thus Λ maps the neighborhood $[u] + V$ of $[u]$ into the neighborhood $\Lambda [u] + W$ of $\Lambda [u]$. Which says that Λ is continuous at $[u]$.

Theorem 6.2.12

Let \bar{X} be a fuzzy topological vector space over \mathbb{R}. Let $\Lambda : \bar{X} \rightarrow \mathbb{R}$ is linear. Assume $\Lambda [u] \neq 0$, for some $[u] \in \bar{X}$. Then each of the following four properties implies the other three.

(a) Λ is continuous.

(b) The null space $N(\Lambda)$ is closed.

(c) $N(\Lambda)$ is not dense in \bar{X}.

(d) Λ is bounded in some neighborhood V of \bar{o}.

Proof:

Since $N(\Lambda) = \Lambda^{-1}(\{0\})$ and $\{0\}$ is the closed subset of \mathbb{R},
(a) ⇒ (b). By hypothesis, \(N(A) \neq \bar{X} \). Hence (b) ⇒ (c). Assume (c) holds. That is assume that the complement of \(N(A) \) has non-empty interiors.

\[
([u] + V) \cap N(A) = \emptyset,
\]

(16)

for some \([u] \in \bar{X}\) and some balanced neighborhood \(V \) of \(\bar{o} \). Then \(\Lambda V \) is a balanced subset of \(R \). Thus either \(\Lambda V \) is bounded, in which case (d) holds, or \(\Lambda V = R \). In the later case there exists \([v] \in V\) such that \(\Lambda[v] = -\Lambda[u] \) and so \([v] + [u] \in N(A)\) in contradiction to (16). Then (c) ⇒ (d). Finally if (d) holds, then \(|\Lambda[u]| < M\),

\[\forall [u] \in V \text{ and for some } M < \infty. \text{ If } r > 0 \text{ and if } W = \left(\frac{r}{M}\right)V, \text{ then } \]

\[|\Lambda[u]| < r, \quad \forall [u] \in W. \text{ Hence } \Lambda \text{ is continuous at } \bar{o}, \text{ by the theorem 6.2.11, and this implies (a).}\]

Definition 6.2.13

A fuzzy topological vector space over \(R \) is said to be metrizable, if it is metrizable as a topological space. In view of (2.3.17), a separated fuzzy topological vector space \(\bar{E} \) is metrizable if and only if there exists a fundamental sequence of neighbourhoods of \(\bar{0} \), in which case there exists a metric \(d \), compatible with the topology of \(\bar{E} \), which is additively invariant.
Lemma 6.2.14

Let \bar{E} be a fuzzy vector space, with a metrizable topology such that

(i) the topology is compatible with the additive group structure

(ii) for each $[u] \in \bar{E}$, the mapping $a \to [au]$ is continuous at $a = 0$ and

(iii) for each $a \in \mathbb{R}$, the mapping $[u] \to [au]$ is continuous at $[u] = 0$;

then the topology is compatible with the vector space structure. That is \bar{E} is a metrizable fuzzy topological vector space over \mathbb{R}.

Proof:

The point is that in the presence of metrizability, condition (iv) of [6.2.1] is superfluous. Thus in view of [6.2.1], it will suffice to verify that $(a, [u]) \to [au]$ is continuous at $(0, 0)$.

We observe first that the mapping $(a, [u]) \to [au]$ is separately continuous in a and in $[u]$; this follows from (i) - (iii) and the formulas $[au_0] - [a_0u_0] = (a - a_0)u_0$ and $[a_0u] - [a_0u_0] = a_0(u - u_0)$.

Let d be any metric that generates the topology. Assuming $a_n \to 0$ and $d([u_n], 0) \to 0$, we wish to show that $d([a_nu_n], 0) \to 0$.

Suppose to the contrary that there exists an $\varepsilon > 0$ such that
d([a_n u_n], \bar{0}) \geq \varepsilon, \text{ for infinitely many } n. \text{ We can suppose that } d([a_n u_n], \bar{0}) \geq \varepsilon, \forall n. \text{ Let } U \text{ be a neighbourhood of } \bar{0} \text{ such that } d([u] + [v], \bar{0}) < \varepsilon, \forall [u],[v] \in U \text{ (this is possible by (i)). We can suppose } U \text{ to be closed and symmetric.}

For each } n, \text{ let }
\begin{align*}
C_n &= \{a \in \mathbb{R}: [a u_i] \in U\}; \forall i \geq n \\
&= \bigcap_{i \geq n} \{a: [a u_i] \in U\}.
\end{align*}

Since each of the sets \{a: [a u_i] \in U\} is closed (it is the inverse image of the closed set \(U\) under the continuous mapping \(a \rightarrow [a u_i]\)), it follows that the \(C_n\) are closed. Moreover,
\[
\bigcup_{n=1}^{\infty} C_n = \mathbb{R}.
\]

For, given any \(a \in \mathbb{R}\), one has \([a u_i] \rightarrow \bar{0}\), by (iii); consequently there exists an index \(n\) such that \([a u_i] \in U\), \(\forall i \geq n\). i.e. \(a \in C_n\).

According to the relation (i), \(R\) is the union of a sequence of closed sets \(C_n\). It is a classical property of \(R\) is that at least one of the sets \(C_n\) must have an interior point. Let \(a_0\) be an interior point of \(C_k\).

For a suitable \(\delta > 0\), the open set
\[
B = \{a: |a - a_0| < \delta\} \subset C_k.
\]
Let \(A = \{b: |b| < \delta\}\); then \(A\) is a symmetric neighbourhood of \(0\), and
Choose an index n so large that $a_i \in A$, $\forall i \geq n$ (possible, since $a_i \to 0$), $[a_0 u_i] \in U$, $\forall i \geq n$ (possible by (iii)). Let $m = \max \{k, n\}$. Since $m \geq n$, we have $a_m \in A$ (by the definition of n), and therefore $a_0 + a_m \in C_k$, by (17). Since $m \geq k$, it follows from the definition of C_k that $(a_0 + a_m)[u_m] \in U$. Also $m \geq n \Rightarrow a_0[u_m] \in U$ (by the definition of n) and therefore $[-a_0 u_m] \in -U = U$. Taking $[u] = [-a_0 u_m]$ and $[v] = (a_0 + a_m)[u_m]$; we have $[u], [v] \in U$ and $[u] + [v] = [a_m u_m]$; then $d([a_m u_m], \bar{0}) = d([u] + [v], \bar{0}) < \varepsilon$, by the definition of U, where as $d([a_m u_m], \bar{0}) \geq \varepsilon$, by the choice of ε. Which is a contradiction.

Hence the proof.

Definition 6.2.15

A sub set \overline{M} of a fuzzy topological vector space over R is said to be bounded, if to every neighborhood V of $\bar{0}$ in \overline{X} corresponds a number $\delta > 0$ such that set $\overline{M} \subset tV$, $\forall t > \delta$.

Theorem 6.2.16.

(a) If d is a translation invariant metric on a fuzzy vector space \overline{X} over R, then
\[d([u], 0) \leq nd([u], 0), \quad \forall [u] \in \overline{X} \quad \text{and for } n = 1, 2, 3, \ldots \]

(b) If \{[u_n]\} is a sequence in a metrizable fuzzy topological vector space \(\overline{X}\) over \(\mathbb{R}\) and if \([u_n] \to \overline{0}\) as \(n \to \infty\), then there are positive numbers \(r_n\) such that \(r_n \to \infty\) and \([r_n u_n] \to \overline{0}\).

Proof:

Statement (a) follows from

\[d([u], 0) \leq \sum_{k=1}^{n} d(k[u], (k-1)[u]), \quad \text{by triangle inequality} \]

\[= n \, d([u], 0), \quad \text{by translation invariant}. \]

To prove (b), let \(d\) be a metric as in (a), compatible with the topology of \(\overline{X}\). Since \(d([u_n], \overline{0}) \to 0\), there is an increasing sequence of positive integers \(n_k\), such that

\[d([u_n], \overline{0}) < k^{-2}, \quad \text{if } n \geq n_k. \]

Put

\[r_n = 1, \quad \text{if } n < n_1 \quad \text{and} \]

\[r_n = k; \quad \text{if } n_k \leq n \leq n_{k+1}. \]

For such \(n\),

\[d([r_n u_n], \overline{0}) = d([k u_n], \overline{0}) \leq k d([u_n], \overline{0}) < k^{-1}. \]

Hence

\[[r_n u_n] \to \overline{0} \quad \text{as } n \to \infty. \]

Theorem 6.2.17.

Let \(\overline{X}\) be a fuzzy topological vector space over \(\mathbb{R}\) and \(\overline{E} \subset \overline{X}\).

Then the following two properties are equivalent.
(a) E is bounded

(b) If $\{u_n\}$ is a sequence in E and $\{r_n\}$ is a sequence of real numbers such that $r_n \to 0$ as $n \to \infty$, then $[r_nu_n] \to \bar{o}$ as $n \to \infty$.

Proof:

Suppose E is bounded. Let V be a balanced neighborhood of \bar{o} in X. Then $E \subset tV$, for some t. If $[u_n] \in E$ and $r_n \to 0$, there exists N such that $r_n < 1$, if $n > N$. Since $t^{-1}E \subset V$ and V is balanced,

$$[r_nu_n] \in V, \forall n > N. \text{ Thus } [r_nu_n] \to \bar{o}.$$

Conversely, if E is not bounded, there is a neighborhood V of \bar{o} and a sequence $r_n \to \infty$ such that no r_nV contains E. Choose $[u_n] \in E$ such that $[u_n] \in r_nV$. Then no $[r^{-1}_nu_n]$ is in V, so that $\{[r^{-1}_nu_n]\}$ does not converge to \bar{o}.

* * * * *

* * * *