CHAPTER V
INTUITIONISTIC FUZZY SUB ALGEBRAS AND IDEALS IN BCH – ALGEBRAS

In this chapter using the notion of Intuitionistic Fuzzy sub Algebras and ideals some results have been studied.

5.1 Intuitionistic fuzzy sub algebras

Definition 5.1.1

An intuitionistic fuzzy set A in a BCH - algebra X is called an intuitionistic fuzzy sub algebra of X if it satisfies the following conditions:

1. $\mu_A(x*y) \geq \min\{ \mu_A(x), \mu_A(y) \}$,
2. $\nu_A(x*y) \leq \max\{ \nu_A(x), \nu_A(y) \}$ for all $x, y \in X$.

Example 5.1.2

Let $X = \{ 0, a, b, c, d \}$ with the following Cayley table be a BCH - algebra.

\[
\begin{array}{c|cccc}
* & 0 & a & b & c & d \\
\hline
0 & 0 & 0 & 0 & 0 & d \\
a & a & 0 & 0 & a & d \\
b & b & b & 0 & 0 & d \\
c & c & c & c & 0 & d \\
d & d & d & d & d & 0 \\
\end{array}
\]

Let $A = \langle \mu_A, \nu_A \rangle$ be an IFS in X defined by

$\mu_A(0) = \mu_A(d) = 0.9, \mu_A(a) = \mu_A(b) = \mu_A(c) = 0.09$ and

$\nu_A(a) = \nu_A(b) = \nu_A(c) = 0.9$ and $\nu_A(0) = \nu_A(d) = 0.09$.

By routine calculations A is an intuitionistic fuzzy subalgebra of X.

In what follows, let X denote a BCH-algebra unless otherwise specified.
Definition 5.1.3[4]

Let \(f : X \rightarrow Y \) be a mapping of BCH – algebras and \(A \) be an IFS of \(Y \). The map \(f^{-1}(A) \) is the pre – image of \(A \) under \(f \), if \(\mu_{f^{-1}(A)}(x) = \mu_f(f(x)), \)
\(\nu_{f^{-1}(A)}(x) = \nu_f(f(x)). \)

Theorem 5.1.4

If \(A \) is an intutionistic fuzzy sub algebra of \(X \), then
\(\mu_A(0) \geq \mu_A(x) \) and \(\nu_A(0) \leq \nu_A(x). \)

Proof:

Let \(x, y \in A \). Since \(A \) is an intutionistic fuzzy sub algebra, \(\mu_A(x \cdot y) \geq \min\{ \mu_A(x), \mu_A(y) \} \)
and
\(\nu_A(x \cdot y) \leq \max\{ \nu_A(x), \nu_A(y) \} \).
Since \(x \cdot x = 0 \),
\(\mu_A(x \cdot x) = \mu_A(0) \)
and
\(\nu_A(x \cdot x) = \nu_A(0). \)
Now \(\mu_A(x \cdot x) \geq \min\{ \mu_A(x), \mu_A(x) \} = \mu_A(x) \)
and
\(\nu_A(x \cdot x) \leq \max\{ \nu_A(x), \nu_A(x) \} = \nu_A(x). \)
Hence \(\mu_A(0) \geq \mu_A(x) \)
and
\(\nu_A(0) \leq \nu_A(x). \)
Theorem 5.1.5

If \(A = < \mu_A, \nu_A > \) and \(B = < \mu_B, \nu_B > \) are two intuitionistic fuzzy sub algebra of \(X \), then \(A \cap B \) is an intuitionistic fuzzy sub algebra of \(X \).

Proof:

Suppose \(A \) and \(B \) are intuitionistic fuzzy sub algebras of \(X \) and let \(x, y \in X \). Then

\[
\mu_{A \cap B}(x \ast y) = \min\{\mu_A(x \ast y), \mu_B(x \ast y)\}
\]

\[
\geq \min[\min\{\mu_A(x), \mu_A(y)\}, \min\{\mu_B(x), \mu_B(y)\}]
\]

\[
= \min[\min\{\mu_A(x), \mu_B(x)\}, \min\{\mu_A(y), \mu_B(y)\}]
\]

\[
= \min[\mu_{A \cap B}(x), \mu_{A \cap B}(y)].
\]

\[
\nu_{A \cap B}(x \ast y) = \max\{\nu_A(x \ast y), \nu_B(x \ast y)\}
\]

\[
\leq \max[\max\{\nu_A(x), \nu_A(y)\}, \max\{\nu_B(x), \nu_B(y)\}]
\]

\[
= \max[\max\{\nu_A(x), \nu_B(x)\}, \max\{\nu_A(y), \nu_B(y)\}]
\]

\[
= \max[\nu_{A \cap B}(x), \nu_{A \cap B}(y)].
\]

Hence \(A \cap B \) is an intuitionistic fuzzy sub algebra of \(X \).

Theorem 5.1.6

If \(A \) is an intuitionistic fuzzy sub algebra of \(X \), then the set \(X_A = \{ x \in X : \mu_A(x) = \mu_A(0), \nu_A(x) = \nu_A(0) \} \) is a sub algebra of \(X \).
Proof:

Let \(x, y \in X_A \). Then

\[
\mu_A(x) = \mu_A(y) = \mu_A(0)
\]

and

\[
\nu_A(x) = \nu_A(y) = \nu_A(0).
\]

Since \(A \) is an intuitionistic fuzzy sub algebra of \(X \), it follows that

\[
\mu_A(x*y) \geq \min\{ \mu_A(x), \mu_A(y) \} = \min\{ \mu_A(0), \mu_A(0) \} = \mu_A(0) \quad \text{and}
\]

\[
\nu_A(x*y) \leq \max\{ \nu_A(x), \nu_A(y) \} = \max\{ \nu_A(0), \nu_A(0) \} = \nu_A(0).
\]

Therefore \(\mu_A(x*y) = \mu_A(0) \) and \(\nu_A(x*y) = \nu_A(0) \).

Hence \(x*y \in X_A \) and consequently \(X_A \) is a sub algebra of \(X \).

Theorem 5.1.7

An intuitionistic fuzzy set \(A \) of \(X \) is an intuitionistic fuzzy sub algebra if and only if for every pair \(\alpha, \beta \in [0, 1] \), the level set \(A_{\alpha, \beta} \) is empty or a sub algebra.

Proof:

Suppose \(A \) is an intuitionistic fuzzy sub algebra and \(A_{\alpha, \beta} \neq \emptyset \). Then for any \(x, y \in A_{\alpha, \beta} \), we have

\[
\mu_A(x*y) \geq \min\{ \mu_A(x), \mu_A(y) \} \geq \alpha
\]

and

\[
\nu_A(x*y) \leq \max\{ \nu_A(x), \nu_A(y) \} \leq \beta.
\]

Therefore \(x*y \in A_{\alpha, \beta} \).

Hence \(A_{\alpha, \beta} \) is a sub algebra.

Conversely,

Take \(\alpha = \min\{ \mu_A(x), \mu_A(y) \} \) and \(\beta = \max\{ \nu_A(x), \nu_A(y) \} \), for any \(x, y \in X \).

Since \(A_{\alpha, \beta} \) is a sub algebra \(x*y \in A_{\alpha, \beta} \), \(\mu_A(x*y) \geq \alpha = \min\{ \mu_A(x), \mu_A(y) \} \) and

\[
\nu_A(x*y) \leq \beta = \max\{ \nu_A(x), \nu_A(y) \}.
\]

Hence \(A \) is an intuitionistic fuzzy sub algebra.
Theorem 5.1.8

Any sub algebra of \(X \) can be realized as a level sub algebra of some intuitionistic fuzzy sub algebra of \(X \).

Proof:

Let \(A \) be a sub algebra of a BCH-algebra \(X \) defined by

\[
\mu_A(x) = \begin{cases}
\alpha & \text{if } x \in A, \\
0 & \text{otherwise},
\end{cases}
\quad \text{and} \quad
\nu_A(x) = \begin{cases}
\beta & \text{if } x \in A, \\
1 & \text{otherwise}.
\end{cases}
\]

Where \(\alpha, \beta \in [0, 1] \) with \(\alpha + \beta \leq 1 \). Clearly \(A_{<\alpha, \beta>} = A \). Let \(x, y \in X \). If \(x, y \in A \), then \(x \cdot y \in A \).

So \(\mu_A(x) = \mu_A(y) = \mu_A(x \cdot y) = \alpha \) and \(\nu_A(x) = \nu_A(y) = \nu_A(x \cdot y) = \beta \).

Since \(A \) is an intuitionistic fuzzy sub algebra, \(\mu_A(x \cdot y) \geq \min \{ \mu_A(x), \mu_A(y) \} \) and \(\nu_A(x \cdot y) \leq \max \{ \nu_A(x), \nu_A(y) \} \).

If at most one of \(x, y \in A \), then at least one of \(\mu_A(x) \) and \(\mu_A(y) \) is equal to \(\alpha \) and one of \(\nu_A(x) = \nu_A(y) = \beta \). Therefore, \(\min \{ \mu_A(x), \mu_A(y) \} = 0 \) and \(\mu_A(x \cdot y) \geq 0 \) and \(\max \{ \nu_A(x), \nu_A(y) \} = 1 \) and \(\nu_A(x \cdot y) \leq 1 \) which completes the proof.

Theorem 5.1.9

If \(A \) is an intuitionistic fuzzy sub algebra of \(X \) and \(\alpha \in [0, 1] \), then we have

(i) if \(\alpha = 1 \), then the upper level set \(U(\mu_A; \alpha) \) is either empty or a sub algebra of \(X \).

(ii) if \(\alpha = 0 \), then the lower level set \(L(\nu_A; \alpha) \) is either empty or a sub algebra of \(X \).
Proof:

(i): Suppose that, $\alpha = 1$ and $xy \in U(\mu_A; \alpha)$. Then $\mu_A(x) \geq \alpha = 1$ and $\mu_A(y) \geq \alpha = 1$

It follows that $\mu_A(x \cdot y) \geq \min\{\mu_A(x), \mu_A(y)\} \geq \min(1, 1) = 1$ so that $x \cdot y \in U(\mu_A; \alpha)$.

Hence $U(\mu_A; \alpha)$ is a sub algebra of X when $\alpha = 1$.

(ii): Suppose that, $\alpha = 0$ and let $x, y \in L(\nu; \alpha)$. Then $\nu_A(x) \leq \alpha = 0$ and $\nu_A(y) \leq \alpha = 0$.

It follows that $\nu_A(x \cdot y) \leq \max\{\nu_A(x), \nu_A(y)\} \leq \min(0, 0) = 0$. Hence $L(\nu_A, \alpha)$ is a sub algebra of X when $\alpha = 0$.

Theorem 5.1.10

Let f be an endomorphism of X. If A is an intuitionistic fuzzy sub algebra of X, then $B = \{ \mu_{f^{-1}(\alpha)}; \nu_{f^{-1}(\alpha)} \}$ is an intuitionistic fuzzy sub algebra.

Proof:

For any $x, y \in X$ we have

$$\mu_{f^{-1}(\alpha)}(x \cdot y) = \mu_A(f(x \cdot y))$$

$$= \mu_A(f(x) \cdot f(y))$$

$$\geq \min\{\mu_A(f(x)), \mu_A(f(y))\}$$

$$= \min\{\mu_{f^{-1}(\alpha)}(x), \mu_{f^{-1}(\alpha)}(y)\}.$$

Similarly we have, for any $x, y \in X$,

$$\nu_{f^{-1}(\alpha)}(x \cdot y) = \nu_A(f(x \cdot y))$$

$$= \nu_A(f(x) \cdot f(y))$$

$$\leq \max\{\nu_A(f(x)), \nu_A(f(y))\}$$

$$= \max\{\nu_{f^{-1}(\alpha)}(x), \nu_{f^{-1}(\alpha)}(y)\}.$$

This completes the proof.
Theorem 5.1.11

Let X and Y be two BCH-algebras and $f : X \rightarrow Y$ be an epimorphism and let $B = < \mu_B, \nu_B >$ be an intuitionistic fuzzy set of Y. If $f^{-1}(B) = < \mu_{f^{-1}(B)}, \nu_{f^{-1}(B)}> is intuitionistic fuzzy sub algebra of X, then B is an intuitionistic fuzzy sub algebra of Y.

Proof:

Let $x, y \in Y$. Then there exists $a, b \in X$ such that $f(a) = x$, $f(b) = y$. It follows that

$\mu_B(x*y) = \mu_B(f(a)*f(b))$
$= \mu_B(f(a-b))$
$= \mu_{f^{-1}(B)}(a-b)$
$\geq \min\{ \mu_{f^{-1}(B)}(a), \mu_{f^{-1}(B)}(b) \}$
$= \min\{ \mu_B(f(a)), \mu_B(f(b)) \}$
$= \min\{ \mu_B(x), \mu_B(y) \}$

$\nu_B(x*y) = \nu_B(f(a)*f(b))$
$= \nu_B(f(a-b))$
$= \nu_{f^{-1}(B)}(a-b)$
$\leq \max\{ \nu_{f^{-1}(B)}(a), \nu_{f^{-1}(B)}(b) \}$
$= \max\{ \nu_B(f(a)), \nu_B(f(b)) \}$
$= \max\{ \nu_B(x), \nu_B(y) \}$

Hence B is an intuitionistic fuzzy sub algebra of Y.
Theorem 5.1.12

If A is an IFS in X such that the non-empty sets $U(\mu_A ; \alpha)$ and $L(\nu_A ; \alpha)$ are subalgebras of X for all $\alpha \in [0, 1]$, then A is an intuitionistic fuzzy sub algebra of X.

Proof:

Suppose that there exist $x_0, y_0 \in X$ such that $\mu_A(x_0 \ast y_0) < \min\{\mu_A(x_0), \mu_A(y_0)\}$

Take $\alpha_0 = 1/2 \left\{ \mu_A(x_0 \ast y_0) + \min\{\mu_A(x_0), \mu_A(y_0)\} \right\}$.

Then $\min\{\mu_A(x_0), \mu_A(y_0)\} > \alpha_0 > \mu_A(x_0 \ast y_0)$. It follows that $x_0, y_0 \in U(\mu_A ; \alpha_0)$ and $x_0 \ast y_0 \notin U(\mu_A ; \alpha_0)$. This is a contradiction and hence μ_A satisfies the inequality

$\mu_A(x \ast y) \geq \min\{\mu_A(x), \mu_A(y)\}$ for all $x, y \in X$. Similarly, suppose that there exists $x_0, y_0 \in X$ such that $\nu_A(x_0 \ast y_0) > \max\{\nu_A(x_0), \nu_A(y_0)\}$.

Take $\beta_0 = 1/2 \left\{ \nu_A(x_0 \ast y_0) + \max\{\nu_A(x_0), \nu_A(y_0)\} \right\}$.

Then $\max\{\nu_A(x_0), \nu_A(y_0)\} \leq \beta_0 < \nu_A(x_0 \ast y_0)$.

It follows that $x_0, y_0 \in L(\nu_A ; \beta_0)$ and $x_0 \ast y_0 \notin L(\nu_A ; \beta_0)$. This is a contradiction and hence ν_A satisfies the inequality $\nu_A(x \ast y) \leq \max\{\nu_A(x), \nu_A(y)\}$ for all $x, y \in X$.

Hence A is an intuitionistic fuzzy sub algebra.

Theorem 5.1.13

If A is a sub algebra of a BCH algebra X, then the IFS $\overline{A} = \langle \chi_A, \chi_A \rangle$ is an intuitionistic fuzzy sub algebra of X where χ_A is the characteristic function of A.

Proof:

Let $x, y \in X$. If $x, y \in A$, then $x \ast y \in A$ since A is a sub algebra of X. Hence $\chi_A(x \ast y) = 1 \geq \min\{\chi_A(x), \chi_A(y)\}$.

87
Also we have
\[0 = 1 - \chi_A (x \ast y) = \chi_A (x \ast y) \leq \max \{ \chi_A (x), \chi_A (y) \}. \]
If \(x \in A \) and \(y \notin A \) (or \(x \notin A \) and \(y \in A \)), then \(\chi_A (x) = 1 \) and \(\chi_A (y) = 0 \).

or \(\chi_A(x) = 0 \) and \(\chi_A(y) = 1 \).

Thus we have
\[\max \{ \chi_A(x), \chi_A(y) \} = \max \{ 1 - \chi_A(x), 1 - \chi_A(y) \} = \max (0, 1) = 1 \geq \chi_A (x \ast y) \]
or \(\max (1, 0) = 1 \geq \chi_A (x \ast y) \).

This completes the proof.

Theorem 5.1.14

Let \(A \) be a non-empty subset of \(X \). If \(\bar{A} = \langle \chi_A, \bar{\chi}_A \rangle \) satisfies

(i) \(\mu_A (x \ast y) \geq \min \{ \mu_A(x), \mu_A(y) \} \)
or

(ii) \(\nu_A (x \ast y) \leq \max \{ \nu_A(x), \nu_A(y) \} \),

then \(A \) is a sub algebra of \(X \).

Proof:

Suppose \(\bar{A} = \langle \chi_A, \bar{\chi}_A \rangle \) satisfies
\[\mu_A (x \ast y) \geq \min \{ \mu_A(x), \mu_A(y) \} \].

Let \(x, y \in A \). Then
\[\chi_A(x \ast y) \geq \min \{ \chi_A(x), \chi_A(y) \} = \min \{ 1, 1 \} = 1 \]
so that \(\chi_A(x \ast y) = 1 \), that is \(x \ast y \in A \). Now suppose that
\[\bar{A} = \langle \chi_A, \bar{\chi}_A \rangle \] satisfies \(\nu_A (x \ast y) \leq \max \{ \nu_A(x), \nu_A(y) \} \). Let \(x, y \in A \). Then
\[\bar{\chi}_A (x \ast y) \leq \max \{ \bar{\chi}_A (x), \bar{\chi}_A (y) \} \]
\[\leq \max \{ 1 - \chi_A (x), 1 - \chi_A (y) \} \]
\[= \max \{ 0, 0 \} = 0. \]

Thus \(\bar{\chi}_A (x \ast y) = 1 - \chi_A (x \ast y) = 0 \), that is \(\chi_A (x \ast y) = 1 \).

That is \(x \ast y \in A \).

Hence \(A \) is a sub algebra of \(X \). This completes the proof.
Theorem 5.1.15

A is a sub algebra of X if and only if $\overline{A} = \langle \mu_{\overline{A}}, \nu_{\overline{A}} \rangle$ where

$$
\begin{align*}
\mu_{\overline{A}}(x) &= \begin{cases}
1 & x \in A, \\
0 & \text{Otherwise},
\end{cases} \\
\nu_{\overline{A}}(x) &= \begin{cases}
0 & x \in A, \\
1 & \text{Otherwise}.
\end{cases}
\end{align*}
$$

is an intuitionistic fuzzy sub algebra of X.

Proof:

Let A be a sub algebra of X. Let $x,y \in X$. If $x,y \in A$, then $x \ast y \in A$

$$
\begin{align*}
\mu_{\overline{A}}(x \ast y) &= 1 \geq \min \{ \mu_{\overline{A}}(x), \mu_{\overline{A}}(y) \} \\
\nu_{\overline{A}}(x \ast y) &= 0 \leq \max \{ \nu_{\overline{A}}(x), \nu_{\overline{A}}(y) \}.
\end{align*}
$$

If $x \notin A$ or $y \notin A$, then $\mu_{\overline{A}}(x) = 0$ or $\mu_{\overline{A}}(y) = 0$, $\nu_{\overline{A}}(x) = 1$ or $\nu_{\overline{A}}(y) = 1$.

Thus we have $\mu_{\overline{A}}(x \ast y) \geq \min \{ \mu_{\overline{A}}(x), \mu_{\overline{A}}(y) \}$ and

$$
\nu_{\overline{A}}(x \ast y) \leq \max \{ \nu_{\overline{A}}(x), \nu_{\overline{A}}(y) \}.
$$

Hence \overline{A} is an intuitionistic fuzzy sub algebra of X.

Conversely, let \overline{A} be an intuitionistic sub algebra of X.

Let $x,y \in X$. If $x,y \in A$, then

$$
\begin{align*}
\mu_{\overline{A}}(x \ast y) &\geq \min \{ \mu_{\overline{A}}(x), \mu_{\overline{A}}(y) \} = 1 \\
\nu_{\overline{A}}(x \ast y) &\leq \max \{ \nu_{\overline{A}}(x), \nu_{\overline{A}}(y) \} = 0.
\end{align*}
$$

So $x \ast y \in A$. Hence A is a sub algebra of X.

Theorem 5.1.16

If IFS $A = \langle \mu_A, \nu_A \rangle$ is an intuitionistic fuzzy sub algebra of X, then

$$
\begin{align*}
\mu_A(0 \ast x) &\geq \mu_A(x) \\
\nu_A(0 \ast x) &\leq \nu_A(x)
\end{align*}
$$

for all $x \in X$.

89
Proof:

For any $x \in X$, we have

\[
\mu_A(0 \ast x) \geq \min \{ \mu_A(0), \mu_A(x) \} \\
\geq \min \{ \mu_A(x \ast x), \mu_A(x) \} \\
\geq \min \{ \min \{ \mu_A(x), \mu_A(x) \}, \mu_A(x) \} \\
= \mu_A(x),
\]

and

\[
\nu_A(0 \ast x) \leq \max \{ \nu_A(0), \nu_A(x) \} \\
\leq \max \{ \nu_A(x \ast x), \nu_A(x) \} \\
\leq \max \{ \max \{ \nu_A(x), \nu_A(x) \}, \nu_A(x) \} \\
= \nu_A(x).
\]

This completes the proof.

Definition 5.1.17

An IFS $A = <\mu_A, \nu_A>$ in X is called an intuitionistic fuzzy closed ideal if

(i) $\mu_A(0 \ast x) \geq \mu_A(x)$ and $\nu_A(0 \ast x) \leq \nu_A(x)$

(ii) $\mu_A(x) \geq \min \{ \mu_A(x \ast y), \mu_A(y) \}$, and $\nu_A(x) \leq \max \{ \nu_A(x \ast y), \nu_A(y) \}$ for all $x, y \in X$.

Theorem 5.1.18

Every intuitionistic fuzzy sub algebra in X satisfying

$\mu_A(x) \geq \min \{ \mu_A(x \ast y), \mu_A(y) \}$ and $\nu_A(x) \leq \max \{ \nu_A(x \ast y), \nu_A(y) \}$ is an intuitionistic fuzzy closed ideal in X.
Proof:

Using Theorem 5.1.15, the proof is straightforward.

Theorem 5.1.19

Every intuitionistic fuzzy closed ideal of X is an intuitionistic fuzzy sub algebra in X.

Proof:

Let $A = \langle \mu_A, \nu_A \rangle$ be an intuitionistic fuzzy closed ideal of a BCH-algebra X and let $x, y \in X$. Then

\[
\mu_A(x \ast y) \geq \min \left\{ \mu_A((x \ast y) \ast x), \mu_A(x) \right\}
\]

\[
\geq \min \left\{ \mu_A((x \ast x) \ast y), \mu_A(x) \right\}
\]

\[
= \min \left\{ \mu_A(0 \ast y), \mu_A(x) \right\}
\]

\[
\geq \min \left\{ \mu_A(x), \mu_A(y) \right\},
\]

and

\[
\nu_A(x \ast y) \leq \max \left\{ \nu_A((x \ast y) \ast x), \nu_A(x) \right\}
\]

\[
\leq \max \left\{ \nu_A((x \ast x) \ast y), \nu_A(x) \right\}
\]

\[
= \max \left\{ \nu_A(0 \ast y), \nu_A(x) \right\}
\]

\[
\leq \max \left\{ \nu_A(x), \nu_A(y) \right\}.
\]

Hence A is an intuitionistic fuzzy sub algebra of X.

Theorem 5.1.20

Every intuitionistic fuzzy sub algebra of X is not an intuitionistic fuzzy closed ideal of X.

91
Proof:

Let $X = \{0, a, b, c, d\}$ with the following Cayley table be a BCH algebra.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>d</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>0</td>
<td>0</td>
<td>a</td>
<td>d</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
<td>0</td>
<td>0</td>
<td>d</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>0</td>
<td>d</td>
</tr>
<tr>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>0</td>
</tr>
</tbody>
</table>

Let $A = <\mu_A, \nu_A>$ be an IFS in X defined by

$\mu_A(0) = \mu_A(d) = 0.9$, $\mu_A(a) = \mu_A(b) = \mu_A(c) = 0.09$ and

$\nu_A(a) = \nu_A(b) = \nu_A(c) = 0.9$ and $\nu_A(0) = \nu_A(d) = 0.09$.

Then A is an intuitionistic fuzzy sub algebra of X.

But $\mu_A(a) = 0.09 < 0.9 = \min \{ \mu_A(a \cdot d), \mu_A(d) \}$.

Hence A is not an intuitionistic fuzzy closed ideal.

This completes the proof.

Theorem 5.1.21

Let $A = <\mu_A, \nu_A>$ be an intuitionistic fuzzy sub algebra of X such that

$\mu_A(x \cdot y) \leq \mu_A(y \cdot x)$, and $\nu_A(x \cdot y) \geq \nu_A(y \cdot x)$ for all $x, y \in X$. Then A is an intuitionistic fuzzy closed ideal of X.

Proof:

Let $A = <\mu_A, \nu_A>$ be an intuitionistic fuzzy sub algebra of X which satisfies the inequalities...
\[\mu_A(x \ast y) \leq \mu_A(y \ast x) \text{ and } \nu_A(x \ast y) \geq \nu_A(y \ast x) \text{ for all } x, y \in X. \]

By Theorem 5.1.16, \(\mu_A(0 \ast x) \geq \mu_A(x) \) and \(\nu_A(0 \ast x) \leq \nu_A(x) \) for all \(x \in X \). Then
\[
\mu_A(x) = \mu_A(x \ast 0) \geq \mu_A(0 \ast x) = \mu_A(y \ast y \ast x)
\]
\[
= \mu_A((y \ast x) \ast y) \geq \min\{\mu_A(y \ast x), \mu_A(y)\} \geq \min\{\mu_A(x \ast y), \mu_A(y)\},
\]
and
\[
\nu_A(x) = \nu_A(x \ast 0) \leq \nu_A(0 \ast x) = \nu_A((y \ast y) \ast x)
\]
\[
= \nu_A((y \ast x) \ast y) \leq \max\{\nu_A(y \ast x), \nu_A(y)\} \leq \max\{\nu_A(x \ast y), \nu_A(y)\}.
\]

Hence \(A \) is an intuitionistic fuzzy closed ideal of \(X \).

Theorem 5.1.22

If \(A \) is an IFS in \(X \) such that the non-empty sets \(U(\mu_A;\alpha) \) and \(L(\nu_A;\alpha) \) are closed ideals of \(X \) for all \(\alpha \in [0, 1] \), then \(A \) is an intuitionistic fuzzy closed ideal of \(X \).

Proof:

Suppose that there exist \(x_0, y_0 \in X \) such that \(\mu_A(x_0) < \min\{\mu_A(x_0 \ast y_0), \mu_A(y_0)\} \).

Take \(\alpha_0 = 1/2 \{ \mu_A(x_0) + \min\{\mu_A(x_0 \ast y_0), \mu_A(y_0)\} \} \). Then
\[
\min\{\mu_A(x_0 \ast y_0), \mu_A(y_0)\} \geq \alpha_0 > \mu_A(x_0)\]

It follows that \(x_0 \ast y_0, y_0 \in U(\mu_A;\alpha_0) \) and \(x_0 \not\in U(\mu_A;\alpha_0) \). This is a contradiction and hence \(\mu_A \) satisfies the inequality
\[
\mu_A(x) \geq \min\{\mu_A(x \ast y), \mu_A(y)\} \text{ for all } x, y \in X.
\]

Similarly, suppose that there exist \(x_0, y_0 \in X \) such that \(\nu_A(x_0) > \max\{\nu_A(x_0 \ast y_0), \nu_A(y_0)\} \).

Take \(\beta_0 = 1/2 \{ \nu_A(x_0) + \max\{\nu_A(x_0 \ast y_0), \nu_A(y_0)\} \} \). Then
\[
\max\{\nu_A(x_0 \ast y_0), \nu_A(y_0)\} \leq \beta_0 < \nu_A(x_0).
\]

It follows that \(x_0 \ast y_0, y_0 \in L(\nu_A;\beta_0) \) and \(x_0 \not\in L(\nu_A;\beta_0) \). This is a contradiction, and hence \(\nu_A \) satisfies the inequality \(\nu_A(x) \leq \max\{\nu_A(x \ast y), \nu_A(y)\} \) for all \(x, y \in X \).

Now assume that there exists \(x_0 \in X \) such that \(\mu_A(0 \ast x_0) < \mu_A(x_0) \).
Take $\alpha_0 = 1/2 \{ \mu_A(0 \ast x_0) + \mu_A(x_0) \}$. Then $\mu_A(0 \ast x_0) \leq \alpha_0$ and $\mu_A(x_0) \geq \alpha_0$. It follows that $x_0 \in U(\mu_A; \alpha_0)$ but $0 \ast x_0 \not\in U(\mu_A; \alpha_0)$. This is a contradiction. Hence $\mu_A(0 \ast x) \geq \mu_A(x)$ for all $x \in X$. Similarly, we get $\nu_A(0 \ast x) \leq \nu_A(x)$ for all $x \in X$.

Hence A is an intuitionistic fuzzy closed ideal.

Theorem 5.1.23

If $\{A_i\}_{i \in I}$ is a family of intuitionistic fuzzy sub algebras of X, then

$\bigcap_{i \in I} A_i$ is an intuitionistic fuzzy sub algebra of X, where $\bigcap_{i \in I} A_i = \langle \bigwedge_{i \in I} \mu_{A_i}, \bigvee_{i \in I} \nu_{A_i} \rangle$.

Proof:

Let $x, y \in M$. Then

$$(\bigcap_{i \in I} \mu_{A_i})(x \ast y) = \bigwedge_{i \in I} \mu_{A_i}(x \ast y)$$

$\geq \bigwedge_{i \in I} \mu_{A_i}(x) \land \mu_{A_i}(y)$$

$= \{ \bigwedge_{i \in I} \mu_{A_i}(x) \} \land \{ \bigwedge_{i \in I} \mu_{A_i}(y) \}$

$= (\bigcap_{i \in I} \mu_{A_i})(x) \land (\bigcap_{i \in I} \mu_{A_i})(y)$.

$$(\bigcap_{i \in I} \nu_{A_i})(x \ast y) = \bigvee_{i \in I} \nu_{A_i}(x \ast y)$$

$\leq \bigvee_{i \in I} \{ \nu_{A_i}(x) \lor \nu_{A_i}(y) \}$

$= \{ \bigvee_{i \in I} \nu_{A_i}(x) \} \lor \{ \bigvee_{i \in I} \nu_{A_i}(y) \}$

$= (\bigcap_{i \in I} \nu_{A_i})(x) \lor (\bigcap_{i \in I} \nu_{A_i})(y)$.

Hence $\bigcap_{i \in I} A_i$ is an intuitionistic fuzzy sub algebra of X.

94
Theorem 5.1.24

Let I be a sub algebra of X. If the intuitionistic fuzzy set A = (μ_A, ν_A) in X is defined by

\[
\mu_A(x) = \begin{cases}
 p & \text{if } x \in I, \\
 s & \text{otherwise},
\end{cases} \\
\nu_A(x) = \begin{cases}
 u & \text{if } x \in I, \\
 v & \text{otherwise}.
\end{cases}
\]

for all x ∈ X where 0 ≤ s < p, 0 ≤ v < u and p + u ≤ 1, s + v ≤ 1, then A is an intuitionistic fuzzy sub algebra of X and \(U(\mu_A; p) = I = L(\nu_A; u) \).

Proof:

Let x, y ∈ X.

If at least one of x and y does not belong to I, then

\[
\mu_A(x * y) \geq s = \min \{\mu_A(x), \mu_A(y)\}, \\
\nu_A(x * y) \leq v = \max \{\nu_A(x), \nu_A(y)\}.
\]

If x, y ∈ I, then

x * y ∈ I and so \(\mu_A(x * y) = p = \min \{\mu_A(x), \mu_A(y)\} \) and

\(\nu_A(x * y) = u = \max \{\nu_A(x), \nu_A(y)\} \).

Therefore A is an intuitionistic fuzzy sub algebra of X.

Theorem 5.1.25

An IFS A = (μ_A, ν_A) in a BCH algebra X is an intuitionistic fuzzy sub algebra if and only if \(A_{<t,s>} = \{x \in X : \mu_A(x) \geq t, \nu_A(x) \leq s\} \) is a sub algebra of X for \(\mu_A(0) \geq t, \nu_A(0) \leq s \).
Proof:

Suppose that A is an intuitionistic fuzzy sub algebra of X and let
\[\mu_A(0) \geq t, \nu_A(0) \leq s. \]
Let $x, y \in A_{<t,s>}$.

Then $\mu_A(x) \geq t, \nu_A(x) \leq s$ and $\mu_A(y) \geq t, \nu_A(y) \leq s$.

Therefore $x \cdot y \in A_{<t,s>}$ for all $x, y \in A_{<t,s>}$.

So $A_{<t,s>}$ is a sub algebra.

Conversely, suppose that $A_{<t,s>}$ is a sub algebra of X for $\mu_A(0) \geq t, \nu_A(0) \leq s$.

Let $x, y \in X$ be such that $\mu_A(x) = t_1, \nu_A(x) = s_1, \mu_A(y) = t_2$ and $\nu_A(y) = s_2$.

We may assume that $t_2 \leq t_1$ and $s_2 \geq s_1$ without loss of generality. It follows that

$A_{<t_2,s_2>} \subseteq A_{<t_1,s_1>}$ so that $x, y \in A_{<t_1,s_1>}$.

Since $A_{<t_1,s_1>}$ is a sub algebra of X, we have $x \cdot y \in A_{<t_1,s_1>}$.

\[\mu_A(x \cdot y) \geq t_1 \geq t_2 = \min \{ \mu_A(x), \mu_A(y) \} \quad \text{and} \quad \nu_A(x \cdot y) \leq s_1 \leq s_2 = \max \{ \nu_A(x), \nu_A(y) \}. \]

Hence A is an intuitionistic fuzzy sub algebra of X.

5.2 Intuitionistic fuzzy H-ideals

Theorem 5.2.1

An intuitionistic fuzzy subset A of X is an intuitionistic fuzzy H-ideal if and only if for any pair $t, s \in [0,1]$ with $t + s \leq 1$, $A_{<t,s>} = \{ x : \mu_A(x) \geq t \text{ and } \nu_A(x) \leq s \}$ is a H-ideal of X where $A_{<t,s>} \neq \emptyset$.

Proof:

Suppose A is an intuitionistic fuzzy H-ideal of X and $A_{<t,s>} \neq \emptyset$, for any pair
Let \(t, s \in [0,1] \) with \(t + s \leq 1 \). Let \(x \in A_{<t, s>} \), then \(\mu_A(x) \geq t \) and \(\nu_A(x) \leq s \). So \(0 \in A_{<t, s>} \).

Suppose \(x^* (y * z) \in A_{<t, s>} \), then

\[
\mu_A(x^*(y * z)) \geq t, \mu_A(y) \geq t \text{ and } \nu_A(x^*(y * z)) \leq s, \nu_A(y) \leq s.
\]

By Definition 4.3.18, \(\mu_A(x^* z) \geq \min \{ \mu_A(x^*(y * z)), \mu_A(y) \} \geq t \) and \(\nu_A(x^* z) \leq \max \{ \nu_A(x^*(y * z)), \nu_A(y) \} \leq s \).

So \(x * z \in A_{<t, s>} \). Hence \(A_{<t, s>} \) is a \(H \)-ideal of \(X \).

Conversely, suppose that for each pair \(t, s \in [0,1] \) with \(t + s \leq 1 \), \(A_{<t, s>} \) is either empty or an ideal of \(X \). For any \(x \in X \), setting \(\mu_A(x) = t \) and \(\nu_A(x) = s \), then \(x \in A_{<t, s>} \). Since \(A_{<t, s>} (\neq \emptyset) \) is an ideal of \(X \), we have \(0 \in A_{<t, s>} \) and hence \(\mu_A(0) \geq t = \mu_A(x) \) and \(\nu_A(0) \leq s = \nu_A(x) \). Thus \(\mu_A(0) \geq \mu_A(x) \) and \(\nu_A(0) \leq \nu_A(x) \) for all \(x \in X \).

If \(\mu_A(x^* z) \geq \min \{ \mu_A(x^*(y * z)), \mu_A(y) \} \) and \(\nu_A(x^* z) \leq \max \{ \nu_A(x^*(y * z)), \nu_A(y) \} \) is not true, then there exist \(x_0, y_0, z_0 \in X \), such that \(\mu_A(x_0 * z_0) < \min \{ \mu_A(x_0 * (y_0 * z_0)), \mu_A(y_0) \} \) and \(\nu_A(x_0 * z_0) > \max \{ v_A(x_0 * (y_0 * z_0)), v_A(y_0) \} \).

Putting \(\mu_A(x_0 * z_0) < t_0 < \min \{ \mu_A(x_0 * (y_0 * z_0)), \mu_A(y_0) \} \) and \(v_A(x_0 * z_0) > s_0 > \max \{ v_A(x_0 * (y_0 * z_0)), v_A(y_0) \} \), then \(x_0 * (y_0 * z_0), y_0 \in A_{<t} \), \(s_0 > \emptyset \). But \(A_{<t} \), \(s_0 > \emptyset \) is an ideal of \(X \), so \(x_0 * z_0 \in A_{<t_0}, s_0 > \). That is, \(\mu_A(x_0 * z_0) \geq t \) and \(v_A(x_0 * z_0) \leq s \) which is contradictory.

Hence \(\mu_A(x^* z) \geq \min \{ \mu_A(x^*(y * z)), \mu_A(y) \} \) and \(\nu_A(x^* z) \leq \max \{ v_A(x^*(y * z)), v_A(y) \} \).

This completes the proof.

Theorem 5.2.2

An intuitionistic fuzzy set \(A \) of \(X \) is an intuitionistic fuzzy \(H \)-ideal if and only if for any \(x_0 \in X \), \(X_A < x_0 > = \{ x \in X : \mu_A(x) \geq \mu_A(x_0) \text{ and } v_A(x) \leq v_A(x_0) \} \) is a \(H \)-ideal of \(X \).
Proof:

Putting $\mu_A(x_0) = t$ and $\nu_A(x_0) = s$, by Theorem 5.2.1, $x_A < x_0>$ is a H-ideal.

Conversely, let A be an intuitionistic fuzzy set of a BCH-algebra X and for any $x_0 \in X,$

$X_A < x_0> = \{ x \in X : \mu_A(x) \geq \mu_A(x_0) \text{ and } \nu_A(x) \leq \nu_A(x_0) \}$ is a H-ideal of X.

It is clear that $\mu_A(0) \geq \mu_A(x)$ and $\nu_A(0) \leq \nu_A(x)$ for all $x \in X.$ For all $x, y \in X,$ putting $\min \{ \mu_A(x*(y*z)) , \mu_A(y) \} = \mu_A(x_0)$ and $\max \{ \nu_A(x*(y*z)) , \nu_A(y) \} = \nu_A(x_0)$

we have $\mu_A(x*(y*z)) \geq \mu_A(x_0)$ and $\nu_A(x*(y*z)) \leq \nu_A(x_0)$

That is, $x*(y*z) \in X_A < x_0>, y \in X_A < x_0>.$ Thus $x*z \in X_A < x_0>$, since $X_A < x_0>$ is a H-ideal.

So $\mu_A(x*z) \geq \mu_A(x_0) = \min \{ \mu_A(x*(y*z)) , \mu_A(y) \}$ and

$\nu_A(x*z) \leq \nu_A(x_0) = \max \{ \nu_A(x*(y*z)) , \nu_A(y) \}$.

Therefore A is an intuitionistic fuzzy H-ideal of X. This completes the proof.