LIST OF FIGURES

<table>
<thead>
<tr>
<th>Fig. No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>A combined effect of back scattered electron and X-ray images</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>revealing porous husk structure and silica concentration at</td>
<td></td>
</tr>
<tr>
<td></td>
<td>outer surface (Stroeven et al., 1997)</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Thermal decomposition process of rice husk (Maeda et al., 2001)</td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>Two-dimensional diagram of a random SiO$_2$ network</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>(Shomglin et al., 2001)</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>Two-dimensional diagram of an ordered SiO$_2$ network</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>(Shomglin et al., 2001)</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Lindberg/Blue M BF 51700 Box Furnace</td>
<td>66</td>
</tr>
<tr>
<td>4.2</td>
<td>Furnace temperature profile for heating and cooling regimes</td>
<td>66</td>
</tr>
<tr>
<td>4.3</td>
<td>Steel balls of different diameters used for grinding</td>
<td>67</td>
</tr>
<tr>
<td>4.4</td>
<td>Difference in colour of the ash produced at (a) 800°C - 5 hours (grey)</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>and (b) 500°C - 1 hour (white)</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>Bulk density of RHA samples produced at various temperatures</td>
<td>67</td>
</tr>
<tr>
<td>4.6</td>
<td>Relationship between BET surface area and duration of incineration</td>
<td>68</td>
</tr>
<tr>
<td>4.7</td>
<td>Relationship between Blaine’s surface area and duration of incineration</td>
<td>68</td>
</tr>
<tr>
<td>4.8</td>
<td>Relationship between percentage of free amorphous silica and duration</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>of incineration by analytical method</td>
<td></td>
</tr>
<tr>
<td>4.9</td>
<td>Correlation between percentage of reactive silica and fineness for</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>RHA produced at 500°C-120minutes combination</td>
<td></td>
</tr>
<tr>
<td>4.10</td>
<td>Calibration chart for conductivity and soluble silica content</td>
<td>70</td>
</tr>
</tbody>
</table>
4.11 Relationship between percentage of reactive silica and incineration time by conductometric technique

4.12 XRD result of 350°C-2½ hours sample

4.13 XRD result of 400°C-½ hours sample

4.14 XRD result of 500°C-2½ hours sample

4.15 XRD result of 600°C-½ hours sample

4.16 XRD result of 800°C-15 minutes sample

4.17 XRD result of 350°C-5 hours sample

4.18 XRD result of 450°C-5 hours sample

4.19 Overlap of figures 4.12 to 4.16

4.20 Comparison graph for XRD results of five RHA samples

4.21 XRD result of 700°C-5 hours sample

4.22 XRD result of 800°C-2½ hours sample

4.23 XRD result of 800°C-5 hours sample

4.24 SEM micrograph of (a) 450°C–1.5 hours and (b) 450°C–2.5 hours sample

4.25 SEM micrograph of (a) 350°C-5 hours and (b) 700°C-5 hours sample

4.26 SEM micrograph of (a), (b) & (c) 700°C-15 min sample viewed under various magnification

4.27 SEM micrograph of (a) 500°C–1 hour and (b) 500°C–2 hour sample

4.28 SEM micrograph (a) 800°C-2½ hours (b) 700°C–15 minutes sample

4.29 SEM micrograph of 600°C–30 minutes sample with EDXA analysis

4.30 SEM micrograph of 500°C-2½ hours sample with EDXA analysis

4.31 SEM micrograph of 450°C-2½ hours sample with EDXA analysis

4.32 SEM micrograph of 800°C-2½ hours sample with EDXA analysis
4.33 SEM micrograph of 500°C-2 hours sample with EDXA analysis
4.34 Energy consumption for empty furnace
4.35 Energy consumption to reach threshold temperature
4.36 Energy consumption for ash production
4.37 Energy consumption of furnace in empty and loaded with husk condition for various incineration conditions
4.38 Shift in the energy consumption from the empty to loaded condition
4.39 Strength gain of RHA samples produced at 350°C for various duration of incineration
4.40 Strength gain of RHA samples produced at 450°C for various duration of incineration
4.41 Strength gain of RHA samples produced at 500°C for various duration of incineration
4.42 Strength gain of RHA samples produced at 600°C for various duration of incineration
4.43 Strength gain of RHA samples produced at 700°C for various duration of incineration
4.44 Strength gain of RHA samples produced at 800°C for various duration of incineration
4.45 Percentage strength gain for RHA samples produced at various production conditions
5.1 SEM micrographs of cement particles and various pozzolans (Mehta, 1992; Sumadi, 1993 and Malhotra, 1990)
5.2 Schematic drawing of the hydration of cement paste with RHA (Hwang and Chandra, 1997)
6.1(a) Gradation curve for fine aggregate
6.1(b) Gradation curve for coarse aggregate
6.2 Standard consistency of RHA- OPC blends
6.3 Initial and final setting time of RHA-OPC blends

6.4 Compressive strength of reference and RHA blended mortar specimens

6.5 SEM micrographs on fractured specimens of reference mortar cubes at various ages of hydration

6.6 SEM micrographs on fractured specimens of OPC-RHA mortar cubes at various ages of hydration

6.7 SEM EDXA analysis on fractured specimens of OPC-RHA mortar cubes on 3 days of hydration

6.8 SEM EDXA analysis on fractured specimens of reference mortar cubes on 28 days of hydration

6.9 SEM EDXA analysis on fractured specimens of OPC-RHA mortar cubes on 28 days of hydration

6.10 (a) Marsh cone details and (b) Test set up photo

6.11 Marsh flow curve for various dosages of super plasticizer

6.12 Super plasticizer dosage for various percentages of cement replacement level

6.13 Compressive strength of RHA blended concrete at various ages for C550 concrete mix

6.14 Compressive strength of RHA blended concrete at various ages for C500 concrete mix

6.15 Compressive strength of RHA blended concrete at various ages for C450 concrete mix

6.16 Compressive strength of RHA blended concrete at various ages for C350 concrete mix

6.17 Increase in the compressive strength of RHA blended concrete mixtures for various cement replacement levels

6.18 Increase in the compressive strength of RHA blended concrete mixtures for various cement replacement levels

6.19 Compressive strength of C550 concrete mix at cement replacement levels
6.20 Compressive strength of C\textsubscript{500} concrete mix at cement replacement levels 138
6.21 Compressive strength of C\textsubscript{450} concrete mix at cement replacement levels 138
6.22 Relative strength at various RHA replacement levels for C\textsubscript{550} concrete mix 139
6.23 Relative strength at various RHA replacement levels for C\textsubscript{500} concrete mix 139
6.24 Relative strength at various RHA replacement levels for C\textsubscript{450} concrete mix 140
6.25 Relative strength at various RHA replacement levels for C\textsubscript{350} concrete mix 140
7.1 Illustration of permeability and porosity (From Concrete Society Technical Report no.31, 1988) 152
7.2 Relation between permeability and capillary porosity of cement paste (Power, 1958) 152
8.1 Test setup for rapid chloride permeability 165
8.2 Chloride permeability of various RHA blended concrete mixes at 60 days 165
8.3 Chloride permeability of various RHA blended concrete mixes at 90 days 166
8.4 Saturated water absorption of various RHA blended concrete mixes at 28 days 166
8.5 Saturated water absorption of various RHA blended concrete mixes at 90 days 167
8.6 Test set up for sorptivity 167
8.7 Sorptivity of various RHA blended concrete mixes at 28 days 168
8.8 Sorptivity of various RHA blended concrete mixes at 90 days 168
8.9 Sorptivity at 28 days for various w/b ratios 169
8.10 Sorptivity at 90 days for various w/b ratios 169
8.11 Correlation between water absorption and sorptivity at 28 and 90 days 170
8.12 Correlation between water absorption and chloride permeability at 28 days 170
8.13 Correlation between compressive strength and chloride permeability at 60 days 171
8.14 Correlation between compressive strength and sorptivity at 28 days 171
8.15 Correlation between compressive strength and water absorption at 28 days 172
8.16 Performance of 20 percent and 30 percent RHA addition with respect to reference mixture 172