CHAPTER 5

INDEPENDENT OPEN IRREDUNDANT COLORINGS OF GRAPHS

5.1 INTRODUCTION

In this chapter, we introduce and study the concept of independent open irredundant colorings which combines the domination parameter namely independent open irredundant set and coloring parameter. Cockayne (1999) introduced the study of a large class of generalised irredundant sets in graphs. Cockayne (1999) identifies 12 types of generalised irredundant sets. Each type of a generalised irredundant set $S \subseteq V$ is defined by the types of private neighbors (i.e. self, internal or external) that each vertex in the set must have. A set S is called an independent open irredundant set or ioir-set if S is an independent set and every vertex in S has an external private neighbor. Perhaps the most interesting of these are the ioir-sets. The minimum cardinality of a maximal independent open irredundant set in G is called the independent open irredundance number of G and is denoted by $ioir(G)$. The maximum cardinality of a maximal independent open irredundant set in G is called the upper independent open irredundance number of G and is denoted
by $IOIR(G)$. These generalised irredundant sets are also studied by Finbow (2003) and Cockayne & Finbow (2004).

Given a property P concerning subsets of V, a P-coloring induces a partition $\Pi = \{V_1,V_2,\ldots,V_k\}$ of V into sets, such that each V_i has the property P. If the property P is independence, the P-coloring is the usual coloring and if the property P is domination, the corresponding P-coloring gives the concept of domatic partition. Haynes et al. (2008) introduced the concept of irredundant colorings and open irredundant colorings of graphs. Arumugam et al. (2011) initiate a study of open irredundant colorings and obtained several results on irredundant colorings and open irredundant colorings. Motivated by the work on Haynes et al. (2008) and Arumugam et al. (2011), we initiate a study of independent open irredundant colorings. An independent open irredundant coloring of a graph G is a partition of V into the nonempty independent open irredundant sets. The independent open erratic number is the minimum order of an independent open irredundant coloring of G and it is denoted by $\chi_{ioir}(G)$. In this chapter, we present some results on independent open irredundant colorings.

5.2 INDEPENDENT OPEN IRREDUNDANT COLORINGS

Throughout this chapter we assume that G is a graph without isolated vertices. In this section, we present independent open irredundant coloring of some basic graphs and also obtain certain
bounds. The following observations are immediate from the definition.

Observation 5.2.1. Since any ioir-coloring of \(G \) is an oir-coloring and \(\chi \)-coloring of \(G \), it follows that \(\chi_{ir}(G) \leq \chi_{oir}(G) \leq \chi_{ioir}(G) \) and \(\chi_{ir}(G) \leq \chi(G) \leq \chi_{ioir}(G) \).

Observation 5.2.2. Since \(V(G) \) is not an ioir-set of \(G \), it follows that \(2 \leq \chi_{ioir}(G) \leq n \).

Theorem 5.2.3. For any graph \(G \), \(\chi_{ioir}(G) = 2 \) if and only if \(G \cong nK_2 \), where \(n \geq 1 \) is a positive integer.

Proof. Assume that \(\chi_{ioir}(G) = 2 \). Let \(\{V_1, V_2\} \) be a partition of \(V(G) \) into independent open irredundant sets. We now prove that every vertex \(v \) in \(G \) has degree 1. Suppose there exists a vertex \(v \in V_1 \) such that \(\text{degv} = 2 > 1 \). Then there exist two vertices \(u, w \in V_2 \) such that \(u \) and \(w \) are adjacent to \(v \). It contradicts the fact that \(V_2 \) is open irredundant. Hence \(G \) is an 1-regular graph and \(G \cong nK_2 \). The converse is obvious.

Theorem 5.2.4. Let \(G \) be a graph of order \(n \). Then \(\chi_{ioir}(G) = n \) if and only if for any independent set \(S \subset V \), there exist \(v, w \in S \) such that \(N(v) \subseteq N(w) \) or \(N(w) \subseteq N(v) \).

Proof. Assume that \(\chi_{ioir}(G) = n \). Suppose there is an independent set \(S \subset V \) such that \(N(v) \not\subseteq N(w) \) and \(N(w) \not\subseteq N(v) \) for all \(v, w \in S \). Then there exists a vertex \(z_1 \in N(v) \) such that \(z_1 \) is not adjacent to \(w \) and there exists a vertex \(z_2 \in N(w) \) such that \(z_2 \) is not adjacent to \(v \). Hence \(\{v, w\} \) is an ioir-set and \(IOIR(G) \geq 2 \).
Then \(\{v, w\} \) and all the singleton sets of \(V(G) - \{v, w\} \) form an \(ioir \)-coloring. Therefore \(\chi_{ioir}(G) \leq n - 1 \) which is a contradiction. The converse is obvious.

Observation 5.2.5. For the complete graph \(K_n \) and the complete bipartite graph \(K_{m,n} \), we have \(\chi_{ioir}(K_n) = n \) and \(\chi_{ioir}(K_{m,n}) = m + n \).

Observation 5.2.6. For any tree \(T \) of order \(n \), \(\chi_{ioir}(T) = n \) if and only if \(T \) is a star.

Theorem 5.2.7. For the path \(P_n = (v_1, v_2, ..., v_n) \), \(n \geq 3 \), we have \(\chi_{ioir}(P_n) = 3 \).

Proof. Let \(V_1 = \{v_1, v_4, v_7, v_{10}, \ldots\} \), \(V_2 = \{v_2, v_5, v_8, v_{11}, \ldots\} \) and \(V_3 = \{v_3, v_6, v_9, v_{12}, \ldots\} \). Clearly \(\{V_1, V_2, V_3\} \) is a partition of \(V(G) \) into independent open irredundant sets. Hence \(\chi_{ioir}(P_n) \leq 3 \). By Theorem 5.2.3 , \(\chi_{ioir}(P_n) \geq 3 \) and so \(\chi_{ioir}(P_n) = 3 \).

Theorem 5.2.8. For the cycle \(C_n = (v_1, v_2, ..., v_n) \), \(n \geq 3 \), we have

\[
\chi_{ioir}(C_n) = \begin{cases}
4 & \text{if } n = 4 \text{ or } n = 7 \\
3 & \text{otherwise.}
\end{cases}
\]

Proof. We can easily observe that \(\chi_{ioir}(C_4) = 4 \). We now prove that \(\chi_{ioir}(C_n) = 3 \) for \(n \neq 4 \) or 7. By Theorem 5.2.3, \(\chi_{ioir}(C_n) \geq 3 \). There are three cases.

Case i. \(n \equiv 0 \pmod{3} \).

Let \(V_1 = \{v_1, v_4, v_7, v_{10}, \ldots v_{n-2}\} \), \(V_2 = \{v_2, v_5, v_8, v_{11}, \ldots v_{n-1}\} \), and \(V_3 = \{v_3, v_6, v_9, v_{12}, \ldots v_n\} \). Clearly \(\{V_1, V_2, V_3\} \) is a partition of \(V(G) \)
into independent open irredundant sets since any three consecutive
vertices in the cycle receive distinct colors. Hence \(\chi_{ioir}(C_n) \leq 3 \).

Case ii. \(n \equiv 1 \pmod{3} \), when \(n \geq 10 \)
Let \(V_1 = \{v_1, v_3, v_6, v_8, v_{11}, v_{14}, v_{17}, \ldots, v_{l-3}, v_l, v_{l+3}, \ldots v_{n-2}\} \),
\(V_2 = \{v_2, v_4, v_7, v_9, v_{12}, v_{15}, v_{18}, \ldots, v_{l-3}, v_l, v_{l+3}, \ldots, v_{n-1}\} \),
\(V_3 = \{v_5, v_{10}, v_{13}, v_{16}, v_{19}, \ldots, v_{l-3}, v_l, v_{l+3}, \ldots, v_n\} \).

We now prove that \(\{V_1, V_2, V_3\} \) is a partition of \(V(G) \) into indepen-
dent open irredundant sets. Clearly the sets \(V_i, i = 1, 2, 3 \) are independent. Hence, it is enough to prove that every vertex in the
set \(V_i \) has an external private neighbor with respect to \(V_i, i = 1, 2, 3 \).
Note that \(v_1, v_5, v_6 \) are the external private neighbors of \(v_2, v_4, v_7 \)
respectively and \(v_n, v_4, v_7 \) and \(v_{10} \) are the external private neighbors
of \(v_1, v_3, v_8 \) and \(v_9 \) respectively. All other remaining vertices \(v_i \) have external private neighbor \(v_{i-1} \).

Case iii. \(n \equiv 2 \pmod{3} \).

Let \(V_1 = \{v_1, v_4, v_7, v_{10}, \ldots v_{n-1}\} \), \(V_2 = \{v_2, v_5, v_8, v_{11}, \ldots v_n\} \) and \(V_3 = \{v_3, v_6, v_9, v_{12}, \ldots v_{n-2}\} \).
Since \(v_2, v_{n-1}, v_{n-2} \) are the external private neighbors of \(v_1, v_n, v_{n-1} \) respectively and remaining vertices \(v_i \) have external private neighbor \(v_{i+1} \), \(\{V_1, V_2, V_3\} \) is a partition of \(V(G) \)
into independent open irredundant sets. Hence \(\chi_{ioir}(C_n) \leq 3 \). Now
we prove that \(\chi_{ioir}(C_7) = 4 \). Since any independent open irredu-
dant set of \(C_7 \) has at most two vertices, minimum four colors are
required to color the vertices of \(C_7 \). Let \(V_1 = \{v_1, v_3\}, V_2 = \{v_2, v_6\},
V_3 = \{v_3, v_5\} \) and \(V_4 = \{v_7\} \). Clearly \(\{V_1, V_2, V_3, V_4\} \) is an ioir-
coloring of \(C_7 \). Hence \(\chi_{ioir}(C_7) = 4 \).
In the following theorem, we investigate the independent open erratic number of the corona of cycle graph.

Theorem 5.2.9. For the cycle \(C_n = (v_1, v_2, ..., v_n) \), \(n \geq 3 \),
we have \(\chi_{ioir}(C_n \circ K_1) = \begin{cases}
4 & \text{if } n \text{ is odd} \\
3 & \text{if } n \text{ is even.}
\end{cases} \)

Proof. Let \(v_1, v_2, ..., v_n \) be the vertices of \(C_n \) and \(u_1, u_2, ..., u_n \) be pendant vertices adjacent to \(v_1, v_2, ..., v_n \) respectively.

Case i. \(n \) is odd

From Theorem 5.2.3, \(\chi_{ioir}(C_n \circ K_1) \geq 3 \). First, we prove that \(\chi_{ioir}(C_n \circ K_1) = 4, n \neq 7 \). From Theorem 5.2.8, \(\chi_{ioir}(C_n) = 3 \). Hence there exists a vertex \(v \in C_n \) such that the vertices of \(N[v] \) receive three distinct colors \(c_1, c_2 \) and \(c_3 \). Let \(u \) be the pendant vertex adjacent to \(v \). Since \(v \) is the only external private neighbor of \(u \) with respect to any subset of \(V(G) \), \(v \) is colored with \(c_4 \) which is different from \(c_1, c_2 \) and \(c_3 \). Hence \(\chi_{ioir}(C_n \circ K_1) \geq 4 \).

From Theorem 5.2.8, vertices of \(C_n \) are colored with three distinct colors \(c_1, c_2 \) and \(c_3 \). Then the pendant vertices \(u_1, u_2, ..., u_n \) are colored with \(c_4 \). It is clear that \(v_1, v_2, ..., v_n \) are the external private neighbors of \(u_1, u_2, ..., u_n \) respectively. Hence \(\chi_{ioir}(C_n \circ K_1) = 4, n \neq 7 \). Now we prove that \(\chi_{ioir}(C_7 \circ K_1) = 4 \). From Theorem 5.2.8, \(\chi_{ioir}(C_7) = 4 \). Let \(c_1, c_2, c_3 \) and \(c_4 \) be the four distinct colors. The vertices \(v_1, v_2, ..., v_n \) are colored with \(c_1, c_2, c_3 \) and \(c_4 \) in the manner that any three consecutive vertices in \(c_7 \) receive three distinct colors. Hence, let \(v_i \) be the vertex in \(c_7 \) such that vertices of \(N[v_i] \) receive three distinct colors \(c_1, c_2 \) and \(c_3 \). Then we color the vertex \(u_i \) with
c_4 which is different from c_1, c_2 and c_3. Hence $\chi_{ioir}(C_7 \circ K_1) = 4$.

Case ii. n is even

From Theorem 5.2.3, $\chi_{ioir}(C_n \circ K_1) \geq 3$. We show that

$\chi_{ioir}(C_n \circ K_1) \leq 3$ by exhibiting an $ioir$ coloring. Let c_1, c_2 and c_3 be three distinct colors. Assign $ioir$ coloring with c_1, c_2 and c_3 as follows: The vertices v_1, v_2, \ldots, v_n are alternately colored with two distinct colors c_1 and c_2. The pendant vertices u_1, u_2, \ldots, u_n are all colored with c_3. It is clear that v_i is the external private neighbor of u_i and vice-versa. Hence $\chi_{ioir}(C_n \circ K_1) = 3$.

Proposition 5.2.10. For any graph G with order n,

$$\frac{n}{IOIR(G)} \leq \chi_{ioir}(G) \leq n - IOIR(G) + 1, \text{ where } IOIR(G) \text{ is the upper independent open irredundance number of } G.$$

Proof. Let $\chi_{ioir}(G) = k$. Let $\{V_1, V_2, \ldots, V_k\}$ be an $ioir$-coloring of G. Since $|V_i| \leq IOIR(G)$, it follows that $n = \sum_{i=1}^{k} |V_i| \leq k.IOIR(G)$. Hence $n/IOIR(G) \leq \chi_{ioir}(G)$. Now, let S be an independent open irredundant set of G with $|S| = IOIR(G)$. Then $\{S\} \cup \{\{v\} : v \in V - S\}$ is an $ioir$-coloring of G. Hence $\chi_{ioir}(G) \leq n - IOIR(G) + 1$.

Proposition 5.2.11. Let $G \neq K_{1,n}$ be a connected graph with $\delta = 1$ and let r denote the maximum number of leaves adjacent to a support vertex v of G. Then $\chi_{ioir}(G) \geq r + 2$.

Proof. Let v_1, v_2, \ldots, v_r be the leaves adjacent to v. Since any independent open irredundant set in G contains at most one of the leaves v_i, the result follows.
Corollary 5.2.12. Let $T \neq K_{1,n}$ be any tree and let r denote the maximum number of leaves adjacent to a support vertex v of T. Then $\chi_{iioir}(T) \geq r + 2$.

5.3 IOIR-COLORING ON DOUBLE STAR GRAPH FAMILIES

A study of harmonious, achromatic coloring on middle graph, central graph, total graph, line graph of various classes of graphs can be found in [Venkatachalam et al. (2012), Vernold Vivin (2007), Vernold Vivin et al. (2007) and Vernold Vivin et al. (2009)]. Motivated by the above, we investigate the independent open erratic number for the central graph, middle graph, total graph, line graph of the star graph $K_{1,n}$ and the double star graph $K_{1,n,n}$.

Proposition 5.3.1. For the star graph $K_{1,n}$, $n \geq 2$, we have

(i) $\chi_{iioir}(M(K_{1,n})) = n + 2$,
(ii) $\chi_{iioir}(C(K_{1,n})) = n + 1$,
(iii) $\chi_{iioir}(T(K_{1,n})) = n + 2$,
(iv) $\chi_{iioir}(L(K_{1,n})) = n$.

Proof. (i) By the definition of middle graph, each edge vv_i in $K_{1,n}$ is subdivided by the vertex e_i in $M(K_{1,n})$ and the vertices $v, e_1, e_2, ..., e_n$ induce a clique of order $n + 1$ in $M(K_{1,n})$. i.e. $V(M(K_{1,n})) = \{v\} \cup \{v_i : 1 \leq i \leq n\} \cup \{e_i : 1 \leq i \leq n\}$. Hence $n + 1$ distinct colors are required to color the vertices $v, e_1, e_2, ..., e_n$. Note that e_i is the only external private neighbor of v_i with respect to any subset
$S \subseteq V$. Therefore, we assign the color which is different from the already assigned colors to v_i. Hence $\chi_{ioir}(M(K_{1,n})) \geq n + 2$. Assign $ioir$-coloring as follows: For $1 \leq i \leq n$, assign the color c_i for e_i and assign the color c_{n+1} to v. For $1 \leq i \leq n$, assign the color c_{n+2} to all the vertices v_1, v_2, \ldots, v_n. Thus $\chi_{ioir}(M(K_{1,n})) = n + 2$.

(ii) By the definition of central graph, each edge vv_i in $K_{1,n}$ is subdivided by the vertex e_i in $C(K_{1,n})$ and the vertices v_1, v_2, \ldots, v_n induces a clique of order n in $C(K_{1,n})$. i.e. $V(C(K_{1,n})) = \{v\} \cup \{v_i : 1 \leq i \leq n\} \cup \{e_i : 1 \leq i \leq n\}$. Since $v_i \ (1 \leq i \leq n)$ induce a clique of order n, we have $\chi_{ioir}(C(K_{1,n})) \geq n$. We now prove that $\chi_{ioir}(C(K_{1,n})) \geq n + 1$. Suppose $\chi_{ioir}(C(K_{1,n})) = n$. Let V_i be the set of vertices which are colored with c_i, $i = 1$ to n. Let we assign the color c_i to $v_i \ (1 \leq i \leq n)$ and assign the color c_1 to v. Therefore the vertices e_1, e_2, \ldots, e_n are colored by $c_2, c_3, \ldots, c_{n-1}, c_n$ in some arrangement. Hence at least two of the vertices e_i and e_j are colored with the same color c_m. Clearly, any vertex adjacent to vertices e_i and e_j is also joined to vertex of color c_m. It follows that there is no external private neighbor for the vertices e_i and e_j with respect to V_m. This is a contradiction. Hence $\chi_{ioir}(C(K_{1,n})) \geq n + 1$. Assign $ioir$-coloring as follows: For $1 \leq i \leq n$, assign the color c_i for v_i and assign the color c_{n+1} for each e_i. Finally we assign the color c_1 to v. Thus $\chi_{ioir}(C(K_{1,n})) = n + 1$.

(iii) By the definition of total graph, we have $V(T(K_{1,n})) = \{v\} \cup \{v_i : 1 \leq i \leq n\} \cup \{e_i : 1 \leq i \leq n\}$, in which the vertices v, e_1, e_2, \ldots, e_n induce a clique of order $n+1$. Clearly $\chi_{ioir}(T(K_{1,n})) \geq n + 1$. Let we assign the color c_i to $e_i \ (1 \leq i \leq n)$ and assign the color c_{n+1} to v. Thus $\chi_{ioir}(T(K_{1,n})) = n + 1$.

113
Since e_i and v are the external private neighbors of v_i with respect to V_i and V_{n+1}, we need one more color to v_i. Hence $\chi_{ioir}(T(K_{1,n})) \geq n + 2$. Assign $ioir$-coloring as follows: For $1 \leq i \leq n$, assign the color c_i for e_i and assign the color c_{n+1} to v. Finally, we assign the color c_{n+2} to each v_i. Thus $\chi_{ioir}(T(K_{1,n})) = n + 2$.

(iv) Since $L(K_{1,n}) \cong K_n$, $\chi_{ioir}(L(K_{1,n})) = n$ is immediate.

Proposition 5.3.2. For the double star graph $K_{1,n,n}$, $n \geq 2$, we have

$$
\chi_{ioir}(M(K_{1,n,n})) = \begin{cases}
n + 1 & \text{for all } n \geq 3 \\
4 & \text{if } n = 2.
\end{cases}
$$

Proof. Clearly, we observe that $\chi_{ioir}(M(K_{1,2,2})) = 4$. By the definition of middle graph, each edge vv_i and v_iu_i ($1 \leq i \leq n$) in $K_{1,n,n}$ are subdivided by the vertices e_i and s_i in $M(K_{1,n,n})$ and the vertices $v, e_1, e_2, ..., e_n$ induce a clique of order $n + 1$ (say K_{n+1}) in $M(K_{1,n,n})$.

i.e. $V(M(K_{1,n,n})) = \{v\} \cup \{v_i : 1 \leq i \leq n\} \cup \{u_i : 1 \leq i \leq n\} \cup \{e_i : 1 \leq i \leq n\} \cup \{s_i : 1 \leq i \leq n\}$. Clearly, $\chi_{ioir}(M(K_{1,n,n})) \geq n + 1$.

Assign $ioir$-coloring as follows: For $1 \leq i \leq n$, assign the color c_i for e_i and assign the color c_{n+1} to v. For $1 \leq i \leq n$, assign two distinct colors c_l and c_m other than c_{n+1} and c_i to the vertices v_i and s_i. Furthermore, assign the color c_{n+1} to each $u_i(1 \leq i \leq n)$.

Let V_i be the set of vertices which are colored with c_i, $i = 1$ to $n + 1$. Note that v is the external private neighbor of all the vertices e_i with respect to V_i, $1 \leq i \leq n$ and e_i's are the external private neighbors of v with respect to V_{n+1}. For $1 \leq i \leq n$, s_i is the external private neighbor of u_i and v_i with respect to V_{n+1} and V_i. Finally,
v_i is the external private neighbor of s_i with respect to V_m. Hence
$\chi_{ioir}(M(K_{1,n,n})) \leq n + 1$.

Example 5.3.3. For example, the graph $M(K_{1,4,4})$ is shown below.

Now, $\chi_{ioir}(M(K_{1,4,4})) = 5$ and \{V_1, V_2, V_3, V_4, V_5\} is an ioir-coloring
of $M(K_{1,4,4})$ where $V_1 = \{v, u_1, u_2, u_3, u_4\}$,

$V_2 = \{e_1, v_2, s_3, s_4\}$,

$V_3 = \{e_2, v_1, v_3, v_4\}$,

$V_4 = \{e_3, s_1, s_2\}$ and

$V_5 = \{e_4\}$.

![Figure 5.1. The graph $M(K_{1,4,4})$](image)

Proposition 5.3.4. For any double star graph $K_{1,n,n}$, $n \geq 1$, we
have $\chi_{ioir}(C(K_{1,n,n})) = n + 2$.

Proof. By the definition of central graph, each edge vv_i and v_iu_i
$(1 \leq i \leq n)$ in $K_{1,n,n}$ are subdivided by the vertices e_i and s_i
in $C(K_{1,n,n})$. The vertices $v, u_1, u_2, ..., u_n$ induce a clique of order
$n + 1$ (say K_{n+1}) and the vertices $v_i(1 \leq i \leq n)$ induce a clique of
order n in $C(K_{1,n,n})$. i.e. $V(C(K_{1,n,n})) = \{v\} \cup \{v_i : 1 \leq i \leq n\} \cup \{u_i : 1 \leq i \leq n\} \cup \{e_i : 1 \leq i \leq n\} \cup \{s_i : 1 \leq i \leq n\}$. Clearly

$\chi_{ioir}(C(K_{1,n,n})) > n+1$. We now prove that $\chi_{ioir}(C(K_{1,n,n})) \geq n+2$. Suppose $\chi_{ioir}(C(K_{1,n,n})) = n + 1$. Since v, u_i ($1 \leq i \leq n$) induce a clique of order $n+1$, let us assign the color c_{n+1} to v and assign the color c_i to u_i ($1 \leq i \leq n$). Since e_i has degree 2 and v is adjacent to the vertex of color c_i for all i, v_i is the only external private neighbor of e_i. But v_i is adjacent to the vertex of color c_j, for all $j \neq i$. Therefore e_i must be colored only with c_i and v_i must be colored only with c_{n+1}. Since v_i ($1 \leq i \leq n$) induce a clique of order n, it leads to a contradiction. Hence $\chi_{ioir}(C(K_{1,n,n})) \geq n+2$.

Consider the colors $c_1, c_2, ..., c_{n+2}$. Assign $ioir$-coloring as follows: Assign the colour c_{n+1} to v and assign the color c_i to u_i, where $1 \leq i \leq n$. Assign the color c_{n+1} to all the vertices $s_1, s_2, ..., s_n$ and assign the color c_{n+2} to all the vertices $e_1, e_2, ..., e_n$. Finally, we assign the color c_i to v_i for $1 \leq i \leq n$. Let V_i be the set of vertices which are colored with c_i, $i = 1$ to $n+2$. For $1 \leq i \leq n$, e_i is the external private neighbor of v with respect to V_{n+1} and v_i is the external private neighbor of e_i with respect to V_{n+2}. For $1 \leq i \leq n$, e_i is the external private neighbor of v_i with respect to V_i and v_i is the external private neighbor of s_i with respect to V_{n+1}. Finally, v is the external private neighbor of all the vertices u_i with respect to V_i. Hence $\chi_{ioir}(C(K_{1,n,n})) \leq n+2$.

Example 5.3.5. The graph $C(K_{1,4,4})$ is shown below.

Now, $\chi_{ioir}(C(K_{1,4,4})) = 6$ and $\{V_1, V_2, V_3, V_4, V_5, V_6\}$ is an $ioir$-coloring of $C(K_{1,4,4})$ where $V_1 = \{v, s_1, s_2, s_3, s_4\}$, $V_2 = \{v_1, u_1\}$, $V_3 = \{v_2, u_2\}$,
$V_4 = \{v_3, u_3\}, \ V_5 = \{v_4, u_4\}$ and $V_6 = \{e_1, e_2, e_3, e_4\}$.

Figure 5.2. The graph $C(K_{1,4,4})$

Proposition 5.3.6. For the double star graph $K_{1,n,n}$, $n \geq 2$, we have $\chi_{ioir}(T(K_{1,n,n})) = n + 1$.

Proof. By the definition of total graph, we have $V(T(K_{1,n,n})) = \{v\} \cup \{v_i : 1 \leq i \leq n\} \cup \{u_i : 1 \leq i \leq n\} \cup \{e_i : 1 \leq i \leq n\} \cup \{s_i : 1 \leq i \leq n\}$ in which the vertices $v, e_1, e_2, ..., e_n$ induce a clique of order $n + 1$. Clearly $\chi_{ioir}(T(K_{1,n,n})) \geq n + 1$. Consider the colors $c_1, c_2, ..., c_{n+1}$. Assign ioir-coloring as follows: Assign the color c_{n+1} to v and assign the color c_i to e_i, where $1 \leq i \leq n$. For $1 \leq i \leq n$, assign two distinct colors other than c_{n+1} and c_i to the vertices v_i and s_i. Finally, assign the color c_{n+1} to each $u_i(1 \leq i \leq n)$. Hence, $\chi_{ioir}(T(K_{1,n,n})) \leq n + 1$.

Example 5.3.7. For example, the graph $T(K_{1,4,4})$ is shown below. Now, $\chi_{ioir}(T(K_{1,4,4})) = 5$ and $\{V_1, V_2, V_3, V_4, V_5\}$ is an ioir-coloring of $T(K_{1,4,4})$ where $V_1 = \{v, u_1, u_2, u_3, u_4\}$, $V_2 = \{e_1, v_2, v_3, v_4\}$, $V_3 = \{e_2, v_1, s_3, s_4\}$, $V_4 = \{e_3, s_1, s_2\}$ and $V_5 = \{e_4\}$.
Proposition 5.3.8. For any double star graph $K_{1,n,n}$, $n \geq 1$, we have $\chi_{ioir}(L(K_{1,n,n})) = n + 1$.

Proof. By the definition of a line graph, each edge of $K_{1,n,n}$ is taken to be a vertex in $L(K_{1,n,n})$. The vertices e_1, e_2, \ldots, e_n induce a clique of order n and the vertices s_1, s_2, \ldots, s_n are all pendant in $L(K_{1,n,n})$. i.e. $V(L(K_{1,n,n})) = \{e_i : 1 \leq i \leq n\} \cup \{s_i : 1 \leq i \leq n\}$.

Since $\chi(L(K_{1,n,n})) = n + 1$ and $\chi(G) \leq \chi_{ioir}(G)$, we have $\chi_{ioir}(L(K_{1,n,n})) \geq n + 1$. Assign $ioir$-coloring as follows: Assign the color c_{n+1} to all the vertices s_i, where $1 \leq i \leq n$ and assign the color c_i to e_i, where $1 \leq i \leq n$. Hence $\chi_{ioir}(L(K_{1,n,n})) \leq n + 1$.

Figure 5.3. The graph $T(K_{1,4,4})$
5.4 CONCLUSION AND SCOPE

In this chapter, we have introduced the concept of independent open irredudant colorings of graphs and have obtained a few results on this parameter. The following are some interesting problems for further investigation.

Problem 5.4.1. Determine additional upper and lower bounds for χ_{ioir}.

Problem 5.4.2. Obtain bounds relating any two of the parameters in $\chi_{ir}(G) \leq \chi_{ioir}(G) \leq \chi_{ioir}(G)$ and in $\chi_{ir}(G) \leq \chi(G) \leq \chi_{ioir}(G)$.

Problem 5.4.3. Establish relationships between the parameters given in this chapter with other graph theoretic parameters.

Problem 5.4.4. Characterize the class of graphs G for which $\chi_{ioir}(G) = \chi(G)$.

Problem 5.4.5. Characterize the class of graphs G for which $\chi_{ioir}(G) = \chi_{oir}(G)$.