CHAPTER - 2

Quasi-Essential Submodules and Minimal \(h \)-pure
Submodules of QTAG-module

Section-1

§ 2.1. Introduction

The concept of quasi-essential submodules has been studied in [23] and different characterizations were obtained in terms of center of \(h \)-purity. A submodule \(N \) of a QTAG-module \(M \) is called quasi-essential if \(M = T + K \) for a complement \(K \) of \(N \) and \(T \) an \(h \)-pure submodule of \(M \) containing \(N \).

In section 2, we extend the study of quasi-essential submodules. First of all we generalize a theorem of L. Fuchs [11], which is of very interesting nature. Here we characterize quasi-essential submodules i.e. We proved that a submodule \(N \) of a QTAG-module \(M \) is quasi-essential if and only if \(K/T \) is an absolute summand of \(M/T \) where \(K \) is an \(h \)-pure submodule of \(M \) containing \(N \) and \(T \) is a complement of \(K \) (Proposition 2.2.10). Further we established various conditions under which \(h \)-pure submodules are direct summands. We also introduced the concept of essentially finitely indecomposable QTAG-module and prove that every \(h \)-pure submodule containing \(M \) is essentially finitely indecomposable. In the end of this section after imposing one more condition on \(M \) many results have been proved to see the relation between center of \(h \)-purity and quasi-essential submodules. It has been seen in [23] that all subsocles of \(M \) are quasi-essential and condition has been obtained under which every quasi-essential subsocle is center of \(h \)-purity. So here we obtain a similar characterization.
Section 3 is devoted to the study of minimal h-pure submodules of QTAG-modules. In this section we obtained a necessary and sufficient condition for an h-pure submodule to be a minimal h-pure submodule containing a given submodule (Theorem 2.3.4). Further we prove that a minimal h-pure submodule containing a submodule of a basic submodule of a QTAG-module becomes a direct sum of uniserial submodules (Theorem 2.3.5).

Section-2

§ 2.2. Quasi-Essential Submodules

First of all we restate the following result from [27].

Lemma A: If A and B are any two uniserial submodules of a QTAG-module M such that $A \cap B \neq 0$ and $d(A) \leq d(B)$. Then there exists a monomorphism $\sigma : A \rightarrow B$, which is identity on $A \cap B$.

Proof: As $d(A) \leq d(B)$, $A + B = B \oplus C$. Now the restriction of the projection $\rho : B \oplus C \rightarrow B$, to A is a desired map.

Now we generalize [Theorem 66.3, 11], which itself is of interesting nature.

Theorem 2.2.1: If M is a QTAG-module then every h-dense subsocle of M supports an h-pure and h-dense submodule.

Proof: Let S be a subsocle of M and S be h-dense; then $\text{Soc}(M) = S + \text{Soc}(H_k(M))$ for all $k \in \mathbb{Z}^+$. Let N be maximal with the property $\text{Soc}(N) = S$. Firstly we show that N is h-neat submodule of M. Let x be a uniform element in $N \cap H_1(M)$,
then for a uniform element \(y \in M \), we have \(d(yR/xR) = 1 \). If \(y \in N \), then \(x \in H_1(N) \). Let \(y \not\in N \) then \(S \subseteq \text{Soc}(N + yR) \). Hence, there exists a uniform element \(z \in \text{Soc}(N + xR) \) such that \(z \not\in S \) and \(z = u + yr \) where \(u \in N \) and \(r \in R \).

Trivially \(yrR = yR \), hence without any loss of generality we can assume \(z = u + y \).

Define a map \(\eta : yR \rightarrow uR \) such that \(\eta(yr) = ur \). Let \(yr = 0 \), then \(zr = ur \).

If \(zrR = zR \) then \(z \in S \), a contradiction, therefore \(zr = 0 \) and we get \(ur = 0 \), consequently \(\eta \) is a well defined epimorphism. Therefore, \(uR \) is a uniform submodule.

Since \(u + y \in \text{Soc}(M) \), \(H_1(uR) = H_1(yR) \), but \(xR \) is a maximal submodule of \(M \); hence \(H_1(yR) = xR \) and we get \(x \in H_1(N) \). Thus, \(N \cap H_1(M) = H_1(N) \). Now suppose \(N \cap H_n(M) = H_n(N) \) and let \(x \) be a uniform element in \(N \cap H_{n+1}(M) \); then \(d(yR/xR) = 1 \) for some uniform element \(y \in H_n(M) \). Since \(N \) is \(h \)-neat in \(M \), there is a uniform element \(y' \in N \) such that \(d(y'R/xR) = 1 \). Hence by Lemma A, there exists an isomorphism \(\sigma : yR \rightarrow y'R \) which is identity on \(xR \).

The map \(\eta : yR \rightarrow (y - y')R \) where \(\sigma(y) = y' \) is an epimorphism with \(xR \subseteq \text{Ker} \eta \). Hence, \(e(y - y') \leq 1 \) and we get \(y - y' \in \text{Soc}(M) = S + \text{Soc}(H_n(M)) \). Therefore, \(y - y' = s + t \) for some \(s \in S, t \in H_n(M) \). Consequently, \(y - t = y' + s \in N \cap H_n(M) = H_n(N) \). Since \(y - y' - s \in \text{Soc}(M) \), \(H_1(yR) = H_1((y' + s)R) \subseteq H_{n+1}(N) \). Hence, \(x \in H_{n+1}(N) \).

Therefore, \(N \) is \(h \)-pure submodule of \(M \).

Now let \(\bar{x} \in \text{Soc}(M/N) = (\text{Soc}(M) + N)/N \) be a uniform element; then by Lemma 1.2.47 there exists a uniform element \(x' \in M \) such that \(\bar{x} = \bar{x}' \) and \(e(x') = 1 \). Since \(\text{Soc}(M) = S + \text{Soc}(H_k(M)) \) for all \(k \), we get \(\bar{x} \in H_k(M/N) \) for every \(k \). Hence, \(\bar{x} \in \bigcap_{k=1}^{\infty} H_k(M/N) \) and appealing to Theorem 1.2.48, we get \(M/N \) is \(h \)-divisible. Hence, \(N \) is \(h \)-dense in \(M \).

Now we state the following lemmas. Since their proofs are of set theoretic nature, therefore the same is omitted.
Lemma 2.2.2: If M is QTAG-module and $K \subseteq N \subseteq M$ and T is a complement of K then $T \cap N$ is complement of K in N. Conversely, if L is complement of K in N, then $L = T \cap K$ whenever T is complement of K of M containing L.

Lemma 2.2.3: If M is QTAG-module and $K \subseteq N \subseteq M$. If T is a complement of K, then every complement of $T \cap N$ in T is a complement of a complement of N in M.

Lemma 2.2.4: If M is QTAG-module and $K \subseteq N \subseteq M$ and T is a complement of K in N. Then a submodule L containing T is a complement of K in M if and only if L/T is a complement of N/T in M/T.

Lemma 2.2.5: If M is QTAG-module and N, K are submodules of M such that $N \cap K = 0$, then a submodule T containing K is a complement of N in M if and only if T/K is a complement of $(N \oplus K)/K$ in M/K.

Now we prove few lemmas which are used later and are of independent interest.

Lemma 2.2.6: If M is QTAG-module and $K \subseteq N \subseteq T$ are submodules of M and N is an h-pure submodules of M. Then T/K is h-pure in M/K if and only if T is h-pure in M.

Proof: If T is h-pure in M then trivially T/K is h-pure in M/K.

Conversely, let T/K be h-pure in M/K and let f be the canonical map defined as $f : M/K \rightarrow M/N$ such that $f(x + K) = x + N$ then $Ker f \subseteq T/K$ and $f(T/K) = T/N$, therefore T/N is h-pure in M/N. Since N is h-pure in M, so T is h-pure in M.

22
Lemma 2.2.7: If \(M \) is QTAG-module, \(N \) is a submodule of \(M \) and \(B \) is an \(h \)-pure, \(h \)-dense submodule of \(N \). Then there exists an \(h \)-pure, \(h \)-dense submodule \(K \) of \(M \) such that \(K \cap N = B \).

Proof: Since \(B \) is \(h \)-dense in \(N \), we have \(M/B = N/B \oplus K/B \) for some submodule \(K \) of \(M \), then by Proposition 1.3.13, \(K \) is \(h \)-pure in \(M \) and trivially \(K \cap N = B \).

Proposition 2.2.8: Let \(M \) be a QTAG-module and \(S \) be a subsocle of \(\text{Soc}(M) \) such that \(S \not\subset M^1 \). Let \(K \) be a maximal \(h \)-pure submodule of \(M \) such that \(\text{Soc}(K) \subseteq S \). Then \((S + K)/K \) is contained in the \(h \)-reduced part of \((M/K)^1 \).

Proof: Trivially \(S \) has at least one element of finite height, therefore, there exists at least one \(h \)-pure submodule \(T \) of \(M \) such that \(\text{Soc}(T) \subseteq S \). The existence of a maximal element is ensured by Zorn’s Lemma, therefore we get a maximal \(h \)-pure submodule \(K \) of \(M \) such that \(\text{Soc}(K) \subseteq S \). Trivially \((S + K)/K \subseteq \text{Soc}(M/K) \). If \((S + K)/K \) has an element of finite height then \(M/K = K'/K \oplus L/K \) such that \(\text{Soc}(K'/K) \subseteq (S + K)/K \), hence \(\text{Soc}(K') \subseteq S \) and since \(K' \) is \(h \)-pure in \(M \), we get a contradiction to the maximality of \(K \).

Therefore, \((S + K)/K \subseteq (M/K)^1 \). Since \(h \)-divisible submodules are absolute summands, hence we ultimately get \((S + K)/K \) contained in the \(h \)-reduced part of \((M/K)^1 \).

Proposition 2.2.9: If \(M \) is a QTAG-module such that \(M = B \oplus D \) where \(B \) is bounded and \(D \) is \(h \)-divisible, then every \(h \)-pure submodule \(K \) of \(M \) is the direct sum of bounded and \(h \)-divisible submodule.
Proof: Let $M = B \oplus D$ where B is bounded and D is h-divisible. Let K be an h-pure submodule of M, then $K \cap D = K^1$. Let T be a complement of K^1 in K, then $T \cap D = 0$ and therefore T is bounded. Hence, $K = T \oplus (K \cap D)$ where $(K \cap D) \cong K/T$ is h-divisible.

Proposition 2.2.10: If M be a QTAG-module and $N \subseteq M$, then N is quasi-essential submodule of M if and only if K/T is an absolute summand of M/T whenever K is an h-pure submodule of M containing N and T is a complement of K.

Proof: Let A/T be a complement of K/T in M/T, then by Lemma 2.2.5, A is a complement of N and if N is quasi-essential, then we get $M = A + K$. Therefore, $M/T = A/T \oplus K/T$.

Conversely, let A be a complement of N in M, then by Lemma 2.2.3, $A \cap K$ is a complement of N in K. Hence, $K/(A \cap K)$ is an absolute summand of $M/(A \cap K)$ and by Lemma 2.2.5, $A/(A \cap K)$ is a complement of $K/(A \cap K)$ in $M/(A \cap K)$. Therefore, $M/(A \cap K) = A/(A \cap K) \oplus K/(A \cap K)$ and we get $M = A + K$. Therefore, N is quasi-essential submodule of M.

Theorem 2.2.11: If M is a QTAG-module and S is a subsocle of M^1. Then every h-pure submodule of M containing S is summand of M if and only if M is a direct sum of a bounded submodule and h-divisible submodule.

Proof: Let K be a complement of M^1, then K is h-pure and M/K is h-divisible Proposition 1.3.26 and Proposition 1.3.27. If K is unbounded then K contains a proper basic submodule B of K and hence $M/B = K/B \oplus T/B$ where T can be
chosen to contain M^1 as $K \cap M^1 = 0$. Appealing to Proposition 1.3.13, T is an h-pure submodule of M and $S \subseteq T$. Therefore, $M = T \oplus A$ and A is h-divisible, which is a contradiction. Hence, K is bounded and therefore K is a summand of M i.e. $M = K \oplus D$ where D is h-divisible.

For the converse we refer to Proposition 2.2.9.

Theorem 2.2.12: If M is a QTAG-module and S is a subsocle of M. Then the following are equivalent:

(i) $S \supseteq Soc(M^1)$ and every h-pure submodule of M containing S is a summand of M.

(ii) Every h-pure submodule of M containing S is a cobounded summand of M.

(iii) $S \supseteq Soc(H_n(M))$, for some positive integer n.

Proof: We establish (ii) \rightarrow (i) \rightarrow (iii) \rightarrow (ii)

(ii) \rightarrow (i) Let x be a uniform element in $Soc(M^1)$ and $x \notin S$, then $xR \cap S = 0$. Embedding S into a complement K of xR. Then K is an h-pure submodule of M and M/K is h-divisible, which is a contradiction. Therefore, $x \in S$ and we get $Soc(M^1) \subseteq S$.

(i) \rightarrow (iii) Let $S = M^1$, then by Theorem 2.2.11, $M = B \oplus D$ where B is bounded and D is h-divisible. Let $H_n(B) = 0$, then clearly $Soc(H_n(M)) \subseteq S$. Let $S \neq M^1$ and K be a maximal h-pure submodule of M such that $Soc(K) \subseteq S$, then by Proposition 2.2.8, $(K + S)/K \subseteq (M/K)^1$. Now every h-pure submodule A/K of M/K containing $(K + S)/K$ is a summand of M/K as A is h-pure submodule of M containing S. Hence, M/K is a direct sum of a bounded submodule and a h-divisible submodule. Thus, M/K is h-pure complete, which is a contradiction. Therefore,
$Soc(K) = S$ and M/K is bounded. Hence, for some n, $H_n(M/K) = 0$ and we get $Soc(H_n(M)) \subseteq S$.

(iii) \rightarrow (ii) Let K be an h-pure submodule of M such that $S \subseteq K$, then $H_n(M) \subseteq K$ and hence K is a cobounded summand of M.

Corollary 2.2.13: If M is a h-reduced QTAG-module and S is a subsocle of M, then every h-pure submodule K of M containing S is summand of M if and only if $S \supseteq Soc(H_n(M))$ for some n.

Proof: Due to above Theorem it is sufficient to show that $Soc(M^1) \subseteq S$. Let x be a uniform element in $Soc(M^1)$ and let $x \notin S$. Let K be a complement of xR and $S \subseteq K$ then by Proposition 1.3.26 and Proposition 1.3.27, K is h-pure submodule of M and $M = K \oplus D$ where $M/K \cong D$ is h-divisible, which is a contradiction as M is h-reduced. Therefore, $x \in S$ and we get $Soc(M^1) \subseteq S$.

Proposition 2.2.14: If M is QTAG-module and N is a submodule of M such that no proper h-pure submodule contains N. Then every h-pure submodule containing $Soc(N)$ is a cobounded summand of M.

Proof: Let T be a submodule of M such that $T \cap N = 0$, then T is bounded, since otherwise T will contain a proper basic submodule B and we will have $M/B = T/B \oplus K/B$. Appealing to Proposition 1.3.13, we get K to be h-pure submodule containing N, which is a contradiction. Now let A be an h-pure submodule of M such that $Soc(N) \subseteq A$, then M/A has a bounded basic submodule. Otherwise, if B/A is unbounded basic submodule of M/A, then $B = A \oplus L$ where $L \cong B/A$ and $A \cap N = 0$, which is a contradiction as L is unbounded. Therefore, $M/A = B/A \oplus D/A$ where
B/A is bounded and D/A is h-divisible.

Now we show that $D/A = 0$. Let $D/A \neq 0$, then M/B is h-divisible and B is h-pure submodule of M. This implies that $Soc(B)$ is proper dense in $Soc(M)$ and $Soc(N) \subseteq Soc(B)$, which is a contradiction. Hence, M/A is bounded. As A is h-pure in M, A is a summand of M.

Corollary 2.2.15: If M is QTAG-module and N is a submodule of M and T is a minimal h-pure submodule of M containing N. Then $T = B \oplus K$ where B is bounded and $Soc(K) = Soc(N)$.

Proof: Appealing to Proposition 2.2.14 and Theorem 2.2.12, we see that $Soc(N)$ supports an h-pure submodule K of T and T/K is bounded. Therefore, $T = B \oplus K$.

Let M be a QTAG-module satisfying the following:

\[(\ast) \quad M/K = B/K \oplus D/K \text{ where } B/K \text{ is bounded and } D/K \text{ is } h\text{-divisible, whenever } K \text{ is } h\text{-pure submodule of } M \text{ containing } M^1.\]

Definition 2.2.16: A QTAG-module M is called essentially finitely indecomposable (e.f.i) if it has no unbounded direct sum of uniserial submodules summand.

Theorem 2.2.17: If M is a QTAG-module and if M satisfies (\ast), then every h-pure submodule of M containing M^1 is e.f.i.

Proof: Let A be an h-pure submodule of M containing M^1, then A satisfies (\ast), because if K is h-pure submodule of A containing $A^1 = M^1$, then A/K is h-pure submodule of M/K and the assertion follows from Proposition 2.2.9. Therefore, A satisfies (\ast). Now let A be not e.f.i., then $A = S \oplus T$ where S is unbounded direct
sum of uniserial submodules. Therefore, \(T \) is \(h \)-pure submodule of \(A \) containing \(A^1 \) and \(A/T \) is unbounded, a contradiction. Hence, \(A \) is e.f.i..

Let us consider one more condition on \(M \) introduced by S. Singh (unpublished) as mentioned below:

(A) For any finitely generated submodule \(N \) of \(M \), \(R/\text{ann}(N) \) is right artinian.

Now we prove the following result which is of independent interest.

Theorem 2.2.18: If \(M \) is a QTAG-module satisfying condition (A) and \(N \) is a quasi-essential submodule of \(M \) such that \(\text{Soc}(N) \not\subseteq M^1 \). Then every \(h \)-pure submodule \(K \) of \(M \) containing \(N \) is a cobounded summand of \(M \).

Proof: Let \(K \) be \(h \)-pure submodule of \(M \) with \(N \subseteq K \), then by Proposition 2.2.10, \(K/T \) is an absolute summand of \(M/T \) where \(T \) is any complement of \(N \) in \(K \). Since \(\text{Soc}(N) \not\subseteq M^1 \), then Proposition 1.4.9 implies that \(K/T \) is not \(h \)-divisible for some complement \(T \) of \(N \) in \(K \), as \(K^1 \subseteq M^1 \). Now appealing to Theorem 1.5.4, there exists a positive integer \(n \) such that

\[
\text{Soc}(H_n(M/T)) \subseteq \text{Soc}(K/T) \subseteq \text{Soc}(H_n(M/T))
\]

Therefore, \(\text{Soc}(H_{n+1}(M)) \subseteq K \) and as \(K \) is \(h \)-pure, then appealing to Proposition 1.3.9, we get \(H_{n+1}(M) \subseteq K \). Hence, \(K \) is cobounded summand of \(M \).

Now we state the following lemma, since the proof is of set theoretic nature, therefore it is omitted.

Lemma 2.2.19: If \(M \) is a QTAG-module such that \(M = N \oplus K \) such that \(N_0 \subseteq N \) and \(K_0 \subseteq K \) are submodules, if \(N' \) is a complement of \(N_0 \) in \(N \) and \(K' \) is a comple-
ment of \(K_0 \) in \(K \), then \(N' \oplus K' \) is a complement of \(K_0 \oplus N_0 \) in \(M \).

Proposition 2.2.20: If \(S \) is a quasi-essential subsocle of a QTAG-module \(M \) and \(N \) is an \(h \)-pure submodule of \(M \) with \(\text{Soc}(N) = \text{Soc}(H_n(M)) \). Then \(S \cap H_n(M) \) is a quasi-essential subsocle of \(N \).

Proof: Let \(N_0 = S \cap H_n(M) \) and \(S = N_0 \oplus K_0 \), then trivially \(K_0 \cap H_n(M) = 0 \).

Let \(K \) be a complement of \(N \) in \(M \) containing \(K_0 \); then since \(N \) is \(h \)-pure and \(M/N \) is bounded, we get \(M = K \oplus N \). Now let \(N' \) be a complement of \(N_0 \) in \(N \) and \(T \) be an \(h \)-pure submodule of \(N \) containing \(N_0 \). If \(K' \) is complement of \(K_0 \) in \(K \), then \(N' \oplus K' \) is complement of \(S \) in \(M \) by Lemma 2.2.19. Now

\[
(T \oplus K) \cap H_n(M) = (T \oplus K) \cap (H_n(K) \oplus H_n(N))
\]

\[
= H_n(K) + (T \oplus K) \cap H_n(N)
\]

Now let \(x \in (T \oplus K) \cap H_n(N) \) then \(x = a + b, a \in T, b \in K \) and \(x \in H_n(N) \), then \(x - a = b \in K \cap N = 0 \), so \(x \in T \cap H_n(N) = H_n(T) \). Hence, we get

\[
(T \oplus K) \cap H_n(M) = H_n(K) \oplus H_n(T)
\]

\[
= H_n(K \oplus T)
\]

So \(T \oplus K \) is an \(h \)-pure submodule of \(M \). Trivially \(S \subseteq T \oplus K \). Since \(S \) is quasi-essential submodule of \(M \), we get \(M = T \oplus K + N' \oplus K' = (T + N') \oplus K \). Hence, \(N = T + N' \). Therefore, \(S \cap H_n(M) \) is quasi-essential in \(N \).

Proposition 2.2.21: If \(S \) be a quasi-essential subsocle of a QTAG-module \(M \) satisfying condition (A) and if \(\text{Soc}(H_n(M)) \neq (S \cap H_n(M)) + \text{Soc}(H_{n+1}(M)) \) for some \(n \in \mathbb{Z}^+ \), then \(S \subset \text{Soc}(H_n(M)) \).

Proof: Let \(A_0 = S \cap H_{n+1}(M) \) and \(S = A_0 \oplus B_0 \). Let \(\text{Soc}(H_{n+1}(M)) \) support an \(h \)-pure submodule \(A \) of \(M \). Let \(B \) be a complement of \(A \) in \(M \) such that \(B_0 \subset B \). Then
as done in Proposition 2.2.20, \(M = A \oplus B \). Let \(K \) be an \(h \)-pure submodule of \(B \) such that \(\text{Soc}(K) = B_0 \) and \(B' \) be a complement of \(K \) in \(B \). Then \(B' \) is also a complement of \(B_0 \). Let \(A' \) be a complement of \(A_0 \) in \(A \), then \(A' \oplus B' \) is complement of \(S \) in \(M \). Since \(S \) is quasi-essential in \(M \) and as done in Proposition 2.2.20, \(A \oplus K \) is an \(h \)-pure submodule of \(M \) containing \(S \). Therefore, \(M = A \oplus K + A' \oplus B' = A \oplus (K \oplus B') \).

Thus, we get \(B = K \oplus B' \), so \(K \) is an absolute direct summand of \(B \). Now appealing to Theorem 1.5.4, we get \(\text{Soc}(H_{k+1}(B)) \subseteq B_0 \subseteq \text{Soc}(H_k(B)) \) for some \(k \in \mathbb{Z}^+ \).

Since \(\text{Soc}(H_n(M)) = \text{Soc}(A) \oplus \text{Soc}(H_n(B)) \) and \(\text{Soc}(H_n(M)) \neq (S \cap H_n(M)) + \text{Soc}(H_{n+1}(M)) \), we get \(\text{Soc}(H_n(B)) \subseteq B_0 \). Thus \(n \leq k \), so \(B_0 \subseteq \text{Soc}(H_n(B)) \).

Hence, \(S = A_0 + B_0 \subseteq \text{Soc}(H_{n+1}(M)) \oplus \text{Soc}(H_n(B)) = \text{Soc}(H_n(M)) \).

Proposition 2.2.22: If \(S \) is quasi-essential subsocle of a QTAG-module \(M \) satisfying condition (A) and is \(h \)-dense in \(M \). Then either \(S \subseteq M^1 \) or \(S = \text{Soc}(M) \).

Proof: Appealing to Theorem 2.2.1, we see that \(S \) supports an \(h \)-pure submodule and is quasi-essential. Now if \(S \not\subseteq M^1 \), then by Theorem 1.5.4, \(\text{Soc}(H_{k+1}(M)) \subseteq S \subseteq \text{Soc}(H_k(M)) \) for some \(k \in \mathbb{Z}^+ \). Since \(\text{Soc}(M) = S + \text{Soc}(H_{k+1}(M)) \) and as \(\text{Soc}(H_{k+1}(M)) \subseteq S \), we get \(S = \text{Soc}(M) \).

Proposition 2.2.23: If \(S \) be a quasi essential subsocle of a QTAG-module \(M \) satisfying condition (A) and if \(\text{Soc}(H_k(M)) = (S \cap H_k(M)) + \text{Soc}(H_{k-1}(M)) \) for every \(k > n \), then either \(H_{n+1}(M) \) is \(h \)-divisible or \(\text{Soc}(H_{n+1}(M)) \subseteq S \).

Proof: Let \(K \) be an \(h \)-pure submodule supported by \(\text{Soc}(H_{n+1}(M)) \), then \(\text{Soc}(H_k(M)) = \text{Soc}(H_k(K)) \) and \(S \cap H_k(M) = S \cap H_k(K) \) for \(k > n \), consequently \(\text{Soc}(H_k(K)) = (S \cap H_k(K)) + \text{Soc}(H_{k+1}(K)) \) for every \(k > n \). Since \(K \) is \(h \)-pure and \(\text{Soc}(H_{n+1}(M)) = \text{Soc}(K) \), we get \(\text{Soc}(K) = \text{Soc}(H_{n+1}(K)) \). Using induction
it is easy to see that $Soc(H_{n+1}(K)) = (S \cap H_{n+1}(K)) + Soc(H_{n+m}(K))$ for all $m \geq 1$. Thus $S \cap H_{n+1}(K)$ is h-dense in $Soc(K)$ and is quasi-essential in $Soc(K)$ (see Proposition 2.2.20). Now by Proposition 2.2.22, either $S \cap H_{n+1}(K) \subseteq K^1$ or $S \cap H_{n+1}(K) = Soc(K)$. If $S \cap H_{n+1}(K) \subseteq K^1$, then as $S \cap H_{n+1}(K)$ is h-dense in K, therefore K is h-divisible; consequently $H_{n+1}(M)$ is h-divisible. If $S \cap Soc(H_{n+1}(K)) = Soc(K)$ then $S \cap Soc(H_{n+1}(M)) = Soc(H_{n+1}(M))$ and we get $Soc(H_{n+1}(M)) \subset S$.

Now we state and prove the main result of this section.

Theorem 2.2.24: If M is a QTAG-module satisfying condition (A) and S is a subsocle of M, then S is quasi-essential if and only if one of the following conditions holds:

(i) $S \subseteq M^1$.

(ii) $Soc(H_{n+1}(M)) \subseteq S \subseteq Soc(H_n(M))$ for some $n \geq 0$.

Proof: The sufficiency follows from Theorem 1.5.2 and Theorem 1.5.3.

Conversely, suppose S is quasi-essential. Now if $Soc(H_n(M)) \neq (S \cap H_n(M)) + Soc(H_{n+1}(M))$ for arbitrarily large n, then by Proposition 2.2.21, $S \subseteq M^1$. If not so, then there exists $n \in Z^+$ such that $Soc(H_n(M)) \neq (S \cap H_n(M)) + Soc(H_{n+1}(M))$ and equality holds for every $k > n$. Thus $S \subseteq Soc(H_n(M))$ by Proposition 2.2.21 and either $Soc(H_{n+1}(M)) \subseteq S$ or $H_{n+1}(M)$ is h-divisible by Proposition 2.2.23. If $Soc(H_{n+1}(M)) \subseteq S$, then the condition (ii) is satisfied.

If $H_{n+1}(M)$ is h-divisible then every subsocle of M will support an h-pure submodule. Thus S supports an absolute direct summand. Therefore, appealing to Theorem 1.5.4, we see that either (i) or (ii) is satisfied.
Appealing to above theorem, the following immediately follows:

Corollary 2.2.25: If M is a QTAG-module satisfying condition (A) then a subsocle S of M supports an absolute direct summand if and only if S is quasi-essential and $S \subseteq M^1$ implies $S \subseteq D$, where D is the maximal h-divisible submodule of M.

Section-3

§ 2.3 Minimal h-pure Submodules

Firstly we recall the following definition from chapter 1.

Definition 2.3.1: A submodule N of a QTAG-module M is called almost dense in M if for every h-pure submodule K of M containing N, M/K is h-divisible.

Definition 2.3.2: Let K be a submodule of a QTAG-module M, then an h-pure submodule N of M containing K is called minimal h-pure submodule of M.

Theorem 2.3.3: Let N be a submodule of a QTAG-module M. Then there is no proper h-pure submodule of M containing N if and only if N is almost dense in M and $Soc(H_n(M)) \subseteq N$ for some n.

Proof: Let N be almost dense in M and $Soc(H_n(M)) \subseteq N$. Let K be an h-pure submodule of M such that $N \subseteq K$, then $Soc(H_n(M)) \subseteq K$ and hence by Proposition 1.3.9, $H_n(M) \subseteq K$, consequently M/K is bounded but it is also h-divisible which is not possible and we get $M/K = 0$ i.e. $M = K$.

32
Conversely, if no proper h-pure submodule of M contains N, clearly N is almost h-dense in M and by Theorem 2.2.12 and Proposition 2.2.14, we get $Soc(H_n(M)) \subseteq N$ for some positive integer n.

Now we prove the following useful criterion:

Theorem 2.3.4: Let N be a submodule of a QTAG-module M. Then N is contained in a minimal h-pure submodule of M if and only if there exists a h-pure submodule K of M such that $Soc(H_n(M)) \subseteq N \subseteq K$ for some $n \in \mathbb{Z}^+$.

Proof: If N is contained in a minimal h-pure submodule of M then the result follows from Theorem 1.3.29.

Conversely, suppose that there exists an h-pure submodule K of M such that $Soc(H_n(M)) \subseteq N \subseteq K$ for some $n \in \mathbb{Z}^+$. If $n = 0$, then trivially K itself is an h-pure submodule containing N. If $n \geq 1$, then for every h-pure submodule T of K containing N, we define

$$E(T) = \{l \geq 1/Soc(T,_{l-1}) \not\subseteq N + H_l(T)\}$$

and set $m(T) = 0$ if $E(T) = \emptyset$ and $m(T) = \max\{m \in E(T)\}$ if $E(T) \neq \emptyset$. Trivially, $m(T) \leq n$ and therefore, there exists an h-pure submodule A of M containing N for which $m(A)$ is minimal. Now by Theorem 1.3.28, we see that $m(A) = 0$ i.e. $A \supseteq N \supseteq Soc(H_n(A))$ and $Soc(H_{l-1}(A)) \subseteq N + H_l(A)$ for all $l \geq 1$. Hence, by Theorem 1.3.29, A is a minimal h-pure submodule of M containing N.

Theorem 2.3.5: If N is a submodule of a QTAG-module such that M/N is a direct sum of uniserial submodules. If K is minimal h-pure submodule of M containing N then M/K is also a direct sum of uniserial submodules.

33
Proof: By Theorem 2.3.4, there exists \(n \in \mathbb{Z}^+ \) such that \(\text{Soc}(H_n(K)) \subseteq N \). Since \(K \) is \(h \)-pure in \(M \), therefore by Proposition 1.3.10, \(\text{Soc}(H_n(M/K)) = (\text{Soc}(H_n(M)) + K)/K \). It is trivial to see that the natural homomorphism \(f: M/N \rightarrow M/K \) defined by \(f(x + N) = x + K \) is onto and maps \((\text{Soc}(H_n(M)) + N)/N \) onto \((\text{Soc}(H_n(M)) + K)/K \). Since we know that homomorphism never decreases heights.

We show that \(f \) is height preserving. Let \(x \) be a uniform element in \(\text{Soc}(H_n(M)) \) and \(x + K \in (\text{Soc}(H_n(M)) + K)/K \), then we can find a uniform element \(y \in \text{Soc}(H_n(M)) \) such that \(x + K = y + K \), then trivially \(x - y \in \text{Soc}(K) \) and as \(K \) is \(h \)-pure, \(x - y \in \text{Soc}(H_n(K)) \subseteq N \). Hence, \(x + N = y + N \in (\text{Soc}(H_n(M)) + N)/N \) and we get \(H_{M/K}(x + K) \leq H_{M/N}(x + N) \). Since \((\text{Soc}(H_n(M)) + N)/N \) is the union of the ascending chain of submodules of bounded height in \(M/N, (\text{Soc}(H_n(M)) + K)/K \) is also the union of an ascending chain of submodules of bounded height in \(M/K \).

Thus, \(H_n(M/K) \) is a direct sum of uniserial submodules and \(M/K \) is direct sum of uniserial submodules.

Finally we prove the following:

Theorem 2.3.6: If \(N \) is a submodule of a basic submodule \(B \) of a QTAG-module \(M \). If \(N \) is contained in a minimal \(h \)-pure submodule \(K \) of \(M \), then \(K \) is a direct sum of uniserial submodules.

Proof: Since \(N \subseteq B \) and \(K \) is an \(h \)-pure submodule of \(M \), then using Theorem 1.4.18, \(N \) can be extended to a basic submodule \(A \) of \(K \). Since \(K \) is minimal \(h \)-pure containing \(N \), \(A = K \) and therefore \(K \) is direct sum of uniserial submodules.