10. SCOPE FOR FURTHER STUDIES

The fuzzy logic multi-objective optimization model proposed with this thesis was an approach selected due to the structure of the data and the goal of the model. It is certain that different approaches can be explored in future studies such as evolutionary computation. In addition, future model could incorporate cost calculation and construction budget that the optimization model is indirectly include when restricting the ROW width. Further, the fuzzy logic multi-displine optimization model does not include the transit mode due to the limits of the data collected through video surveillance study. Additional data collection could be conducted to allow for the inclusion of the transit mode in future studies.

Several different option of the model can also be created where the user would have the ability to enter certain preferences, including the weight of a certain mode in comparison with the other modes. Also, a single model can be created to combine several different sceneries when the user could select the constraints and the weights for each mode.

Overall the entire model performed well and provides a unique approached to the design of urban streets which can be termed complete street.

The method provided within this document provide insight into the precipitation of level of services by bicycle and pedestrian model user on urban streets, as well as providing a method for engineers and planners to design urban complete street to refute travellerar’s perception of screeches and relevant design standard.