CONTENTS

LIST OF PLATES ix
LIST OF TABLES xi
LIST OF FIGURES xv
LIST OF ABBREVIATIONS xvii

Chapter Title

I INTRODUCTION

1.1. Rhizobium
1.1.1. Taxonomy 1
1.1.2. Symbiosis 2

1.2. Leguminous plants
1.2.1. Vigna mungo (L.) Hepper 3
1.2.2. Arachis hypogaea L. 3

1.3. Environmental stresses
1.3.1. Salt Stress 4
1.3.2. pH Stress 4
1.3.3. Temperature Stress 5
1.3.4. Drought Stress 5

II REVIEW OF LITERATURE

2.1. Rhizobia
2.1.1. Rhizobial characteristics 8

2.2. Nodule formation
2.2.1. Signalling between host and root nodule bacteria 10
2.2.2. Linkage of host and root nodule bacteria 10
2.2.3. Rhizobial entry into the root 11
2.2.4. Rhizobial entry through root hairs 11
2.2.5. Infection thread formation 12
2.2.6. Bacteriod development 12
2.2.7. Root nodule formation in Sesbania rostrata 14
2.2.8. Determination of nodules 15

2.3. Nitrogen fixation
2.3.1. Symbiotic nitrogen fixation (SNF) 16

2.4. Importance of host-rhizobia interactions to agriculture 17

2.5. Effect of Rhizobium inoculants
2.5.1. Effect of Bradyrhizobium 23
2.5.2. Effect of Rhizobium and vermicompost 24

2.6. Factors affecting the growth of Rhizobium and host 25

2.7. Molecular studies of Rhizobium sp. 27
2.8. Stress conditions 29
2.9. Salt stress on the leguminous plants 32
2.10. Effects of salt concentrations on growth of Rhizobium 39
2.11. Water stress on the leguminous plants 41

III MATERIALS AND METHODS 47
3.1. Sample collection 47
3.2. Collection of nodules 47
3.3. Isolation and purification of Rhizobium from root nodules 47
3.4. Cultural characteristics of Rhizobium 48
 3.4.1. Colony shape and size 48
 3.4.2. Gram staining 48
 3.4.3. Motility test 48
3.5. Identification of Rhizobium 49
 3.5.1. Growth in YEMA medium with congo red 49
 3.5.2. Staining of polyhydroxy butyrate test (PHB) 49
 3.5.3. Hoffer’s alkaline broth test (HAB) 49
 3.5.4. Growth in lactose agar 49
 3.5.5. Growth in litmus milk agar 50
3.6. Biochemical characterization of Rhizobium 50
 3.6.1. Indole Test 50
 3.6.2. Methyl red test 50
 3.6.3. Voges Proskauer test 51
 3.6.4. Citrate utilization test 51
 3.6.5. Hydrogen sulfide production test 51
 3.6.6. Nitrate reduction test 51
 3.6.7. Urease test 52
 3.6.8. Catalase test 52
 3.6.9. Oxidase test 52
 3.6.10. Starch hydrolysis 52
 3.6.11. Gelatin hydrolysis test 53
 3.6.12. Triple Sugar Iron Agar Test 53
 3.6.13. Mac-Conkey Agar Test 53
3.7. RAPD-PCR analysis of genomic DNA 53
 3.7.1. DNA extraction 53
 3.7.2. RAPD-PCR amplification 54
 3.7.3. Construction of dendrogram based on statistical analysis 54
3.8. Physiology of growth of Rhizobium 55
 3.8.1. Utilization of carbon sources 55
 3.8.2. Effect of pH 55
 3.8.3. Effect of Temperature 56
 3.8.4. Effect the NaCl 56
3.8.5. Antibiotic Sensitivity 56
3.9. Biochemical components 56
3.9.1. Estimation of total protein 56
3.9.2. Estimation of DNA (Diphenylamine method) 57
3.10. Molecular characterization 58
3.10.1. Protein profile (SDS-PAGE) 58
3.10.2. Plasmid profile 59
3.11. Testing nodulation ability of *Rhizobium* 60
3.11.1. Test tube method 60
3.11.2. Plastic cup method 60
3.11.3. New Nodulation Ability Test 61
3.11.4. Green house experiment 62
3.12. Pot experiments 63
3.12.1. Soil analysis 63
3.12.2. Sterilization of seeds 63
3.12.3. Germination of seeds 63
3.12.4. Preparation of inoculums 63
3.12.5. Nutrient solution 64
3.12.6. Salt and water stress treatments 64
3.13. Determination of morphometric characters of plants and fresh and air-dry weight of nodules 65
3.14. Estimation of nitrogenase activity by the acetylene reduction technique 66
3.15. Nodule fractionation 66
3.15.1. Preparation of nodule cytosol 66
3.15.2. Determination of leghaemoglobin content 67
3.16. Statistical analysis 67

IV RESULTS 68

4.1. Bacterial Collection 68
4.2. Morphological characteristics of *Rhizobium* 68
4.3. Identification of *Rhizobium* 69
4.4. Biochemical characteristics of *Rhizobium* isolates 70
4.5. RAPD-PCR analysis 70
4.6. Carbohydrate utilization by *Rhizobium* 71
4.7. Effect of pH on growth of *Rhizobium* 72
4.8. Effect of temperature on growth of *Rhizobium* 73
4.9. Effect of NaCl concentration on the growth of *Rhizobium* 74
4.10. Antibiotic resistant pattern for Rhizobial Isolates 75
4.11. Protein studies in *Rhizobium* 76
4.12. Studies in *Rhizobium* 76
4.13. Nodulation ability by *Rhizobium* 76
4.13.1. Test tube method 77
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.13.2</td>
<td>New nodulation ability test</td>
<td>77</td>
</tr>
<tr>
<td>4.13.3</td>
<td>Plastic cup method</td>
<td>78</td>
</tr>
<tr>
<td>4.13.4</td>
<td>Green house experiment</td>
<td>78</td>
</tr>
<tr>
<td>4.14</td>
<td>Properties of soil</td>
<td>79</td>
</tr>
<tr>
<td>4.15</td>
<td>Nodulation and morphological variations of Arachis hypogaea and Vigna mungo plants under salt stress</td>
<td>79</td>
</tr>
<tr>
<td>4.16</td>
<td>Nodulation and morphological changes of Arachis hypogaea and Vigna mungo plants under water stress</td>
<td>81</td>
</tr>
<tr>
<td>4.17</td>
<td>Estimation of nitrogenase activity</td>
<td>83</td>
</tr>
<tr>
<td>4.18</td>
<td>Determination of Leghaemoglobin content</td>
<td>83</td>
</tr>
</tbody>
</table>

V DISCUSSION

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Morphological characteristics of Rhizobium</td>
<td>85</td>
</tr>
<tr>
<td>5.2</td>
<td>Identification of Rhizobium</td>
<td>86</td>
</tr>
<tr>
<td>5.3</td>
<td>Biochemical characterization in Rhizobium strains</td>
<td>87</td>
</tr>
<tr>
<td>5.4</td>
<td>RAPD-PCR Analysis</td>
<td>87</td>
</tr>
<tr>
<td>5.5</td>
<td>Carbohydrate utilization by Rhizobium</td>
<td>88</td>
</tr>
<tr>
<td>5.6</td>
<td>Effect of pH on the growth of Rhizobium</td>
<td>89</td>
</tr>
<tr>
<td>5.7</td>
<td>Effect of temperature on the growth of Rhizobium</td>
<td>90</td>
</tr>
<tr>
<td>5.8</td>
<td>Effect of NaCl concentration on the growth of Rhizobium</td>
<td>90</td>
</tr>
<tr>
<td>5.9</td>
<td>Antibiotic resistance pattern for Rhizobium</td>
<td>91</td>
</tr>
<tr>
<td>5.10</td>
<td>Protein studies in Rhizobium</td>
<td>92</td>
</tr>
<tr>
<td>5.11</td>
<td>DNA studies in Rhizobium</td>
<td>93</td>
</tr>
<tr>
<td>5.12</td>
<td>Nodulation ability of Rhizobium</td>
<td>94</td>
</tr>
<tr>
<td>5.13</td>
<td>Effect of salt stress on growth of plants</td>
<td>94</td>
</tr>
<tr>
<td>5.14</td>
<td>Effect of water stress on growth of plants</td>
<td>96</td>
</tr>
<tr>
<td>5.15</td>
<td>Estimation of nitrogenase activity</td>
<td>97</td>
</tr>
<tr>
<td>5.16</td>
<td>Determination of leghaemoglobin content</td>
<td>98</td>
</tr>
</tbody>
</table>

VI SUMMARY

REFERENCES xx
APPENDICES xxxvi