Chapter 4

Orthodox Γ-semirings

Orthodox semigroups were first studied by Yamada\cite{70} in 1967 and Hall\cite{27} in 1969. In this chapter, we introduce the notion of Orthodox Γ-semirings and extend important results of Yamada\cite{70,71}, Hall\cite{27} and Meakin\cite{44} to orthodox Γ-semirings. We also discuss homomorphisms on orthodox Γ-semirings.
4.1 Basic Definitions

In order to make this chapter reasonably self contained, we present here some basic definitions which we require for the development of this chapter.

Definition 4.1.1. Let S and Γ be two additive commutative semigroups. Then S is called Γ-semiring if there exists a mapping $S \times \Gamma \times S \rightarrow S$ (image to be denoted by aab for $a, b \in S, \alpha \in \Gamma$) satisfying the following conditions.

(i) $aa(b + c) = aab + aac$

(ii) $(a + b)\alpha c = aac + bac$

(iii) $a(\alpha + \beta)b = aab + a\beta b$

(iv) $aa(b\beta c) = (a\alpha b)\beta c$, for all $a, b, c \in S$ and for all $\alpha, \beta \in \Gamma$.

Definition 4.1.2. A non empty subset A of a Γ-semiring S is called a sub Γ-semiring of S if A is a sub semigroup of S and $A\Gamma A \subseteq A$.

Definition 4.1.3. An element e in a Γ-semiring S is said to be an idempotent in S if there exists an $\alpha \in \Gamma$ such that $e = eae$. In this case, we say that e is an α-idempotent. If every element of S is an idempotent, then S is called an idempotent Γ-semiring.

Definition 4.1.4. For an element a in a Γ-semiring S, if there exists an element $b \in S$ and $\alpha, \beta \in \Gamma$ such that $a = aab\beta a$ and $b = b\beta aab$, then b is said to be an (α, β) inverse of a. In this case, we write $b \in V^\beta_\alpha(a)$. we also denote it by $a_{\alpha,\beta}^{-1}$ i.e., $a_{\alpha,\beta}^{-1} \in V^\beta_\alpha(a)$.

Definition 4.1.5. An element s in a Γ-semiring S is said to be regular if $s \in s\Gamma S \Gamma s$, where $s\Gamma S \Gamma s = \{sax\beta s; x \in S; \alpha, \beta \in \Gamma\}$. A Γ-semiring S is said to be regular if every element of S is regular.
Definition 4.1.6. A non empty subset T of a Γ-semiring S is said to be a Γ-band in S if T satisfies the following conditions: (i) every element of T is idempotent (ii) if e is an α-idempotent and f is a β-idempotent, then $e\alpha f$ is a β-idempotent and $e\beta f$ is an α-idempotent. A Γ-band T of a Γ-semiring S is said to be a rectangular Γ-band if for all $a, b \in S$ there exists $\alpha \in \Gamma$ such that $a\alpha a = e$ and $a\alpha b\alpha a = a$.

Definition 4.1.7. Let S be a Γ-semiring and S' be a Γ'-semiring. A pair of mappings $f_1 : S \to S'$ and $f_2 : \Gamma \to \Gamma'$ is said to be a homomorphism from (S, Γ) into (S', Γ') if (i) $f_1(a + b) = f_1(a) + f_1(b)$ (ii) $f_1(a\alpha b) = f_1(a)f_2(\alpha)f_1(b)$ for all $a, b \in S$ and $\alpha \in \Gamma$.

4.2 Orthodox Γ-Semirings

Definition 4.2.1. A Γ-semiring S is called orthodox if it is regular and if its idempotents form a sub Γ-semiring. In otherwords, a regular Γ-semiring S is called an orthodox Γ-semiring if e is an α-idempotent and f is a β-idempotent of S, then $e\alpha f, f\alpha e$ are β-idempotents($e\beta f, f\beta e$ are α-idempotents).

Example 4.2.1. Let Q^* be the set of all non-zero rational numbers and let Γ be the set of all positive integers. Let $a, b \in Q^*$ and $\alpha \in \Gamma$. Let us define the mapping $S \times \Gamma \times S \to S$ by $a\alpha b \mapsto |a|ab$. For this operation, Q^* is a Γ-semiring. Let $\frac{p}{q} \in Q^*$. Now, $\left|\frac{p}{q}\right| \frac{1}{\frac{1}{p}} \frac{1}{\frac{1}{q}} = \frac{p}{q}$. Hence Q^* is a regular Γ-semiring. Here $\frac{1}{q}(q \in \Gamma)$ is a q-idempotent. These are the only idempotents of Q^*. Now, $\left|\frac{1}{q}\right| \frac{1}{\frac{1}{q}}$ is a p-idempotent. Hence Q^* is an orthodox Γ-semiring.

Lemma 4.2.2. Let S be a regular Γ-semiring with set E of idempotents and let $\alpha, \beta \in \Gamma$. Suppose $e\alpha e = e, f\beta f = f \in E$. Then the set $S_{\alpha}^\beta(e, f)$ defined by $S_{\alpha}^\beta(e, f) = \{g \in V_{\beta}^\alpha(e\alpha f) \cap E; g\alpha e = f\beta g = g\}$ is not empty.
Proof. Let \(x \in V_\beta^\alpha(e\alpha f) \) and let \(g = f\beta x\alpha e \). Then

\[
(e\alpha f)\beta g(e\alpha f) = e\alpha(f\beta f)\beta x\alpha(eae)\alpha f,
\]

\[
= e\alpha f\beta x\alpha e\alpha f,
\]

\[
= e\alpha f.
\]

Now,

\[
g\alpha(e\alpha f)\beta g = f\beta x\alpha(eae)\alpha(f\beta f)\beta xae,
\]

\[
= f\beta(xae\alpha f\beta x)ae,
\]

\[
= f\beta xae,
\]

\[
= g.
\]

Hence \(g \in V_\beta^\alpha(e\alpha f) \).

Moreover,

\[
gag = f\beta(xae\alpha f\beta x)ae,
\]

\[
= f\beta xae,
\]

\[
= g.
\]

Consequently \(g \in E \).

Finally it is clear that

\[
gae = f\beta x\alpha(eae),
\]

\[
= f\beta xae,
\]

\[
= g.
\]
and

\[f^\beta g = (f^\beta f)^\beta x^\alpha e \]
\[= f^\beta x^\alpha e \]
\[= g \]

Hence \(g \in S^\beta_{\alpha}(e,f) \).

Remark 4.2.1. The set \(S^\beta_{\alpha}(e,f) \) is called the \((\alpha,\beta)\) sandwich set of \(e \) and \(f \). It has an obvious alternative characterization \(S^\beta_{\alpha}(e,f) = \{ g\alpha g = g \in S; \ g\alpha e = g = f^\beta g, \ e\alpha g\alpha f = e\alpha f \} \)

Lemma 4.2.3. Let \(S \) be a regular \(\Gamma \)-semiring with set \(E \) of idempotents and let \(e, f \in E \). Then \(S^\beta_{\alpha}(e,f) \) is a sub \(\Gamma \)-semiring of \(S \) and it is a rectangular \(\Gamma \)-band.

Proof. Let \(g, h \in S^\beta_{\alpha}(e,f) \).

Then

\[g\alpha h\alpha g = g\alpha(e\alpha h\alpha f)\beta g \]
\[= (g\alpha e)\alpha(f^\beta g) \]
\[= g\alpha g \]
\[= g \quad (i) \]

It follows that \((g\alpha h)\alpha(g\alpha h) = g\alpha h\) and so \(g\alpha h \) is \(\alpha \)-idempotent.

Moreover,

\[(g\alpha h)\alpha e = g\alpha(h\alpha e) \]
\[= g\alpha h \]
\[f^\beta(g\alpha h) = (f^\beta g)\alpha h \]
\[= g\alpha h \]

107
and

\[e\alpha(gah)\alpha f = (e\alpha g\alpha f)\beta h\alpha f \]
\[= e\alpha(f\beta h)\alpha f \]
\[= e\alpha h\alpha f \]
\[= e\alpha f \]

Hence \(gah \in S_{\alpha}^{\beta}(e, f) \). From (i), we deduce that \(S_{\alpha}^{\beta}(e, f) \) is a rectangular \(\Gamma \)-band.

\[\square \]

Lemma 4.2.4. Let \(S \) be a regular \(\Gamma \)-semiring. Let \(a, b \in S \) and \(\alpha, \beta, \gamma, \delta \in \Gamma \). Suppose \(a' \in V_{\alpha}^{\beta}(a), b' \in V_{\gamma}^{\delta}(b) \). Then for each \(g \in S_{\alpha}^{\delta}(a'\beta a, b\gamma b') \), \(b'\delta g\alpha a' \in V_{\gamma}^{\beta}(a\alpha b) \).

Proof.

\[(a\alpha b)\gamma(b'\delta g\alpha a')\beta(a\alpha b) = a\alpha(b\gamma b'\delta g)\alpha a'\beta a\alpha b \]
\[= a\alpha(g\alpha a'\beta a)ab \]
\[= a\alpha g\alpha ab \]
\[= a\alpha(a'\beta a\alpha g\alpha b\gamma b')\delta b \]
\[= (a\alpha a'\beta a)b\gamma b'\delta b \]
\[= a\alpha a'\beta a \]
\[= a\alpha a' \]

Moreover,

\[(b'\delta g\alpha a')\beta(a\alpha b)\gamma(b'\delta g\alpha a') = b'\delta(g\alpha a'\beta a)b\gamma b'\delta g)\alpha a' \]
\[= b'\delta(g\alpha g)\alpha a' \]
\[= b'\delta g\alpha a' \]

Hence \(b'\delta g\alpha a' \in V_{\gamma}^{\beta}(a\alpha b) \). \[\square \]
Theorem 4.2.5. Let S be a regular Γ-semiring with set E of idempotents. Then the following statements are equivalent:

(i) S is orthodox

(ii) If $e = e\alpha e$ and $f = f\beta f$ are any two idempotents of S, then $f\beta e \in S^\beta_{\alpha}(e, f)$ where $\alpha, \beta \in \Gamma$.

(iii) For all $a, b \in S$, there exist $\alpha, \beta, \gamma, \delta \in \Gamma$ such that $V^\beta_\gamma(b)\Gamma V^\beta_\alpha(a) \subseteq V^\beta_\gamma(aab)$.

(iv) For every $e \in E$, there exist $\alpha, \beta \in \Gamma$ such that $V^\beta_\alpha(e) \subseteq E$.

Proof.

(i) \Rightarrow (ii): Suppose that S is orthodox. Let $e = e\alpha e, f = f\beta f \in E$ and $g = f\beta e$.

Then

\[
\begin{align*}
 g\alpha e &= f\beta(e\alpha e) \\
 &= f\beta e \\
 &= g \\
 f\beta g &= (f\beta f)\beta e \\
 &= f\beta e \\
 &= g \\
 \text{and } e\alpha g\alpha f &= e\alpha f\beta e\alpha f \\
 &= e\alpha f
\end{align*}
\]

By remark 4.2.1, $g = f\beta e \in S^\beta_{\alpha}(e, f)$.

(ii) \Rightarrow (iii): Let $a, b \in S$ and $\alpha, \beta, \gamma, \delta \in \Gamma$. Suppose $a' \in V^\beta_\alpha(a)$ and $b' \in V^\beta_\gamma(b)$.

Then by lemma 4.2.4, $b'\delta g\alpha a' \in V^\beta_\gamma(aab)$ for all g in $S^\delta_{\alpha}(a'\beta a, b\gamma b')$. From (ii), it follows that $(b\gamma b')\delta(a'\beta a) \in S^\delta_{\alpha}(a'\beta a, b\gamma b')$. By lemma 4.2.4, $b'\delta(b\gamma b'\delta a'\beta a)a'a' \in V^\beta_\gamma(aab)$. Hence $b'\delta a' \in V^\beta_\gamma(aab)$.

109
(iii) ⇒ (iv): Let \(e \in E \) and \(\alpha, \beta \in \Gamma \). Suppose \(x \in V^\beta_\alpha(e) \). Then \(x\beta eax = x \) and \(eax\beta e = e \). Since \(x\beta e \) is \(\alpha \)-idempotent and \(eax \) is \(\beta \)-idempotent, \(x\beta e \in V^\alpha_\alpha(x\beta e) \) and \(eax \in V^\beta_\beta(eax) \). By (iii), \((eax)\beta(x\beta e) \in V^\alpha_\beta(x\beta eax)\) which implies \((eax)\beta(x\beta e) \in V^\alpha_\beta(x)\). Now,

\[
x = x\beta(eax\beta x\beta e)\alpha x
= (x\beta eax)\beta(x\beta eax)
= x\beta x
\]

Hence \(x \) is idempotent.

(iv) ⇒ (i): Let \(eae = e, f\beta f = f \in E \) and \(\alpha, \beta \in \Gamma \). By lemma 4.2.2, there exists an idempotent \(g \) in \(V^\beta_\alpha(f\beta e) \). Since \((f\beta e) \) being an \((\beta, \alpha) \) inverse of the idempotent \(g \) is itself an idempotent, \(S \) is orthodox. \(\square \)

Theorem 4.2.6. Let \(S \) be an orthodox \(\Gamma \)-semiring with set \(E \) of idempotents. Let \(\alpha, \beta, \gamma \in \Gamma \). For all \(a \) in \(S \), \(e \) in \(E \) and \(a' \in V^\gamma_\alpha(a) \), the element \(aae\beta a' \) is \(\gamma \)-idempotent and the element \(a'\beta eaa \) is \(\alpha \)-idempotent.

Proof.

\[
(aae\beta a')\gamma(aae\beta a') = a\alpha(e\beta a'\gamma aae\beta a'\gamma a)\alpha a'
= aae\beta(a'\gamma aaea')
= aae\beta a'
\]

and \((a'\beta eaa)\alpha(a'\beta eaa) = a'\gamma(aa\beta eaa\alpha a'\beta_e)a\alpha
= (a'\gamma aae)\beta eae
= a'\beta eaa
\]

as required. \(\square \)
Theorem 4.2.7. Every inverse Γ-semiring S is an orthodox Γ-semiring.

Proof. Let e be an α-idempotent and f be a β-idempotent of S. We first show that eaf is a β-idempotent. Now $eaf \in S$. There exist $\gamma, \delta \in \Gamma$ and $x \in S$ such that $x \in V_\delta^\gamma(eaf)$. Then $(eaf)\delta x\gamma(eaf) = eaf$ and $x\gamma(eaf)\delta x = x$. Let $g = f\delta x\gamma eaf$ and $h = f\delta x\gamma e$. It can be seen easily that $g\beta g = g$.

Also,

$$(f\delta x\gamma eaf)\beta(f\delta x\gamma e)(f\delta x\gamma eaf) = f\delta(x\gamma eaf\delta x)\gamma(eaf\delta x\gamma eaf)$$

$$= f\delta x\gamma eaf$$

$$= g$$

This shows that $g\beta hg = g$. Similarly $h\alpha g\beta h = h$. Hence, $g \in V_\alpha^\beta(h)$. Also, $eaf \in V_\alpha^\beta(h)$. Since S is an inverse Γ-semiring, $g = eaf$. Hence eaf is a β-idempotent. Proceeding as above, we can show that fae is a β-idempotent and both $e\beta f$ and $f\beta e$ are α-idempotents. Hence S is an orthodox Γ-semiring. \hfill \Box

Theorem 4.2.8. A regular Γ-semiring S is an orthodox Γ-semiring if and only if for any α-idempotent $e \in S$, where $\alpha \in \Gamma$, if $V_\alpha^\beta(e) \neq \phi$ and $V_\beta^\alpha(e) \neq \phi$, then each member of $V_\alpha^\beta(e)$ and $V_\beta^\alpha(e)$ is a β-idempotent.

Proof. Suppose S is an orthodox Γ-semiring. Let e be an α-idempotent of S and let $x \in V_\alpha^\beta(e)$. Then $eax\beta e = e$ and $x\beta eax = x$. Now, eax is a β-idempotent and $x\beta e$ is an α-idempotent. Then $x = (x\beta e)\alpha(eax)$ is a β-idempotent. Next let $y \in V_\beta^\alpha(e)$. Then $e\beta yae = e$ and $yae\beta ey = y$. Now yae is a β-idempotent and $e\beta y$ is an α-idempotent. Then $y = (yae)\alpha(e\beta y)$ is a β-idempotent. Conversely suppose that S satisfies the given conditions. Let e be an α-idempotent and f a β-idempotent of S.\hfill \Box
Let us now consider $e\alpha f$. Now $e\alpha f \in S$ and since S is regular, there exists $x \in S$ and $\gamma, \delta \in \Gamma$ such that $(e\alpha f)\gamma x\delta(e\alpha f) = e\alpha f$, $x\delta(e\alpha f)\gamma x = x$. Let $g = f\gamma x\delta e$. Then

$$g\alpha g = f\gamma x\delta e \alpha f\gamma x\delta e$$

$$= f\gamma x\delta e \alpha f\gamma x\delta e$$

$$= f\gamma x\delta e$$

$$= g$$

Further

$$(e\alpha f)\beta (f\gamma x\delta e)\alpha (e\alpha f) = e\alpha f\gamma x\delta e \alpha f$$

$$= e\alpha f$$

and $$(f\gamma x\delta e)\alpha (e\alpha f)\beta (f\gamma x\delta e) = (f\gamma x\delta e)\alpha (f\gamma x\delta e)$$

$$= f\gamma x\delta e$$

Hence $e\alpha f \in V^\beta(f\gamma x\delta e)$. Then by the given condition, $e\alpha f$ is a β-idempotent. Dually, we can prove that $f\alpha e$ is a β-idempotent.

\[\square\]

Lemma 4.2.9. Let S be an inverse Γ-semiring. Let $a, b \in S$ and $a' \in V^\alpha_{\alpha_1}(a)$, $b' \in V^\beta_{\beta_1}(b)$ where $\alpha_1, \alpha_2, \beta_1, \beta_2 \in \Gamma$. Then $b'\beta_2 a' \in V^\alpha_{\alpha_1}(a) b$ and $b'\alpha_1 a' \in V^\beta_{\beta_1}(a) b'$.

Proof. Since $a' \in V^\alpha_{\alpha_1}(a)$ and $b' \in V^\beta_{\beta_1}(b)$, $a\alpha_1 a'\alpha_2 a = a$, $a'\alpha_2 a\alpha_1 a' = a'$ and $b\beta_1 b'\beta_2 b = b$, $b'\beta_2 b\beta_1 b' = b'$. Now $a'\alpha_2 a$ is an α_1-idempotent and $b\beta_1 b'$ is a β_2-idempotent. From theorem 4.2.7 it follows that $a'\alpha_2 a\alpha_1 b\beta_1 b'$ is a β_2-idempotent, $b\beta_1 b'\beta_2 a'\alpha_2 a$ is an α_1-idempotent, $a'\alpha_2 a\beta_2 b\beta_1 b'$ is an α_1-idempotent and $b\beta_1 b'\alpha_1 a'\alpha_2 a$ is a β_2-idempotent.

112
Now,
\[(a_1b)\beta_1(b_2a')\alpha_2(a_1b) = a_1a'\alpha_2a_1b\beta_1b_2a'\alpha_2a_1b\beta_1b_2b\]
\[= a_1(a_1'\alpha_2a_1b\beta_1b_2(a_2\alpha_1b\beta_1b'))\beta_2b\]
\[= a_1a'\alpha_2a_1(b\beta_1b_2b)\]
\[= a_1a\]

\[(b'\beta_2a')\alpha_2(a_1b)\beta_1(b_2a') = b'\beta_2b_1b_2a'\alpha_2a_1b_1b_2a'\alpha_2a_1a'
\[= b'\beta_2(b\beta_1b_2a')\alpha_2(b\beta_1b\beta_2a)a_1a'
\[= (b'\beta_2b_1b')\beta_2(a'\alpha_2a_1a')
\[= b'\beta_2a'
\]
Hence \(b'\beta_2a' \in V_{\beta_1}^{a_2}(a_1b)\). Similarly we can prove that \(b'\alpha_1a' \in V_{\beta_1}^{a_2}(a\beta_2b)\). \hfill \Box

Theorem 4.2.10. A regular \(\Gamma\)-semiring \(S\) is an orthodox \(\Gamma\)-semiring if and only if for \(a, b \in S\), \(\alpha_1, \alpha_2, \beta_1, \beta_2 \in \Gamma\), \(a' \in V_{\alpha_1}^{a_2}(a)\), \(b' \in V_{\beta_1}^{\beta_2}(b)\) imply that \(b'\beta_2a' \in V_{\beta_1}^{a_2}(a_1b)\) and \(b'\alpha_1a' \in V_{\beta_1}^{a_2}(a\beta_2b)\).

Proof. Let us assume that \(S\) is an orthodox \(\Gamma\)-semiring. Let \(a' \in V_{\alpha_1}^{a_2}(a)\) and \(b' \in V_{\beta_1}^{\beta_2}(b)\). Then \(a_1a'\alpha_2a = a, a'\alpha_2a_1a' = a', b_1b_2b = b, b'\beta_2b_1b' = b'\). Then by lemma 4.2.9, \(b'\beta_2a' \in V_{\beta_1}^{a_2}(a_1b)\) and \(b'\alpha_1a' \in V_{\beta_1}^{a_2}(a\beta_2b)\).

Conversely assume that the given conditions hold in \(S\). Let \(e\) be an \(\alpha\)-idempotent and \(f\) be a \(\beta\)-idempotent of \(S\). Now, \(f \in V_{\beta}^{\beta}(f)\) and \(e \in V_{\alpha}^{\alpha}(e)\). Then by the given conditions \(e\alpha f \in V_{\alpha}^{\beta}(f\beta e)\) and \(e\beta f \in V_{\alpha}^{\beta}(f\alpha e)\). From (i), we get \((e\alpha f)\beta(f\beta e)\alpha(e\alpha f) = e\alpha f\). Hence \((e\alpha f)\beta(e\alpha f) = e\alpha f\). Thus \(e\alpha f\) is a \(\beta\)-idempotent. From (ii), we get \((f\alpha e)\alpha(e\beta f)\beta(f\alpha e) = f\alpha e\). Hence, \((f\alpha e)\beta(f\alpha e) = f\alpha e\). So, \(f\alpha e\) is a \(\beta\)-idempotent. Hence \(S\) is an orthodox \(\Gamma\)-semiring. \hfill \Box
4.3 Homomorphisms on Orthodox Γ-semirings

In this section we deal with homomorphisms on orthodox Γ-semirings.

Lemma 4.3.1. Let S be a regular Γ-semiring and S' be a Γ'-semiring. Let (f,g) be a homomorphism from (S,Γ) onto (S',Γ'). Let e' be an α'-idempotent of S'. Then $f^{-1}(e')$ contains an idempotent of S.

Proof. Let $a \in S$ be such that $f(a) = e' = e'\alpha' e'$ where $\alpha' \in \Gamma'$. Let $\alpha \in \Gamma$ be such that $g(\alpha) = \alpha'$. Now let us consider the element aaa. As S is a regular Γ-semiring, there exist $\beta, \gamma \in \Gamma$ and $c \in S$ such that $(aaa)\beta c \gamma (aaa) = aaa$ and $c \gamma (aaa) \beta c = c$. Now, $a\beta c \gamma a$ is an α-idempotent in S since $(a\beta c \gamma a)\alpha (a\beta c \gamma a) = \alpha (c \gamma a a \beta c) \gamma a = a \beta c \gamma a$. Also,

$$f(a\beta c \gamma a) = f(a)g(\beta)f(c)g(\gamma)f(a)$$

$$= e'\alpha' e' g(\beta)f(c)g(\gamma)e'\alpha' e'$$

$$= f(a a a)g(\beta)f(c)g(\gamma)f(a a a)$$

$$= f(a a a \beta c \gamma a a a)$$

$$= f(a a a) = e'\alpha' e' = e'$$

Hence $f^{-1}(e')$ contains an idempotent of S.

Lemma 4.3.2. Let S be a regular Γ-semiring and let S' be a Γ'-semiring. Let (f,g) be a homomorphism from (S,Γ) onto (S',Γ'). Then S' is a regular Γ'-semiring.

Proof. Let $a' \in S'$. There exists $a \in S$ such that $f(a) = a'$. Since S is a regular Γ-semiring, there exists $b \in S$ and $\alpha, \beta \in \Gamma$ such that $a = a a b \beta a$.

114
Then

\[
a' = f(a) \\
= f(a\alpha b\beta a) \\
= f(a)g(\alpha)f(b)g(\beta)f(a) \\
= a'g(\alpha)f(b)g(\beta)a'
\]

Thus \(a'\) is a regular element of \(S'\). Hence \(S'\) is a regular \(\Gamma'\)-semiring.

\[\square\]

Theorem 4.3.3. Let \(S\) be an orthodox \(\Gamma\)-semiring and \(S'\) be a \(\Gamma'\)-semiring. Let \((\varphi, \psi)\) be a homomorphism from \((S, \Gamma)\) onto \((S', \Gamma')\). Then \(S'\) is an orthodox \(\Gamma'\)-semiring.

Proof. Since \(S\) is regular, by lemma 4.3.2 it follows that \(S'\) is also regular \(\Gamma'\)-semiring. Let \(e' = e'\alpha' e'\) and \(f' = f'\beta' f'\) where \(\alpha', \beta' \in \Gamma'\) be two arbitrary idempotents of \(S'\). By lemma 4.3.1, \(\varphi^{-1}(e')\) and \(\varphi^{-1}(f')\) both contain idempotents of \(S\). Let \(E_S\) denote the set of idempotents of \(S\). Let \(e \in \varphi^{-1}(e') \cap E_S\) and \(eae = e\), where \(\psi(\alpha) = \alpha'\) and \(f \in \varphi^{-1}(f') \cap E_S\) and \(f\beta f = f\) where \(\psi(\beta) = \beta'\). Now since \(S\) is an orthodox \(\Gamma\)-semiring, \(eaf, fae\) are \(\beta\)-idempotents and \(e\beta f, f\beta e\) are \(\alpha\)-idempotents. Then \(\varphi(eaf) = e'\alpha' f' \in E_{S'}\) and \(e'\alpha' f'\) is \(\beta'\)-idempotent. Similarly \(f'\alpha' e'\) is a \(\beta'\)-idempotent. Hence \(S'\) is an orthodox \(\Gamma'\)-semiring.

\[\square\]