List of Figures

<table>
<thead>
<tr>
<th>Figures</th>
<th>Captions</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig.1.1</td>
<td>The relationship between analytical chemistry, other branches of chemistry, and the other sciences. The central location of analytical chemistry in the diagram signifies its importance and the breadth of its interactions with many other disciplines.</td>
<td>3</td>
</tr>
<tr>
<td>Fig.1.2</td>
<td>Goals of analytical chemistry and their relationships to the analytical quality and analytical properties.</td>
<td>8</td>
</tr>
<tr>
<td>Fig.2.1</td>
<td>Effect of time on the oxidation of amlodipine besylate by Iron (III) (method A).</td>
<td>60</td>
</tr>
<tr>
<td>Fig.2.2</td>
<td>Effect of time on the oxidation of amlodipine besylate by Iron (III) (method B).</td>
<td>61</td>
</tr>
<tr>
<td>Fig.2.3</td>
<td>Effect of time on the oxidation of amlodipine besylate by ammonium heptamolybdate in disodium hydrogen phosphate – citric acid buffer solution method.</td>
<td>62</td>
</tr>
<tr>
<td>Fig.2.4</td>
<td>Effect of 2 ml of varying concentration of ferric ammonium sulphate on the oxidation of amlodipine besylate (method A)</td>
<td>63</td>
</tr>
<tr>
<td>Fig.2.5</td>
<td>Effect of 2 ml of varying concentration of ferric ammonium sulphate on the oxidation of amlodipine besylate (method B).</td>
<td>64</td>
</tr>
<tr>
<td>Fig.2.6</td>
<td>Effect of 0.5 ml of varying concentration of 1,10–phenanthroline (method A).</td>
<td>65</td>
</tr>
<tr>
<td>Fig.2.7</td>
<td>Effect of 0.5 ml of varying concentration of 1.0 ml of varying concentration of 2,2’–bipyridyl (method B).</td>
<td>66</td>
</tr>
</tbody>
</table>
Fig. 2.8 Effect of volume of 2.5×10^{-2} M ammonium heptamolybdate tetrahydrate solution on the oxidation of amlodipine besylate.

Fig. 2.9 Calibration curve for the determination of amlodipine besylate (method A).

Fig. 2.10 Calibration curve for the determination of amlodipine besylate (method B).

Fig. 2.11 Calibration curve for the determination of amlodipine besylate (method C).

Fig. 2.12 Variation of confidence limit at 95 and 99% confidence levels in the determination of amlodipine besylate by method A.

Fig. 2.13 Variation of confidence limit at 95 and 99% confidence levels in the determination of amlodipine besylate by method B.

Fig. 2.14 Variation of confidence limit at 95 and 99% confidence levels in the determination of amlodipine besylate by method C.

Fig. 3.1 Absorption spectra of green - blue coloured nitroso derivative of labetalol (●) and its reagent blank (○).

Fig. 3.2 Effect of time on the progress of reaction.

Fig. 3.3 Effect of volume of sodium nitroprusside solution on the formation of nitroso derivative of labetalol hydrochloride.

Fig. 3.4 Effect of volume of buffer solution on the formation of nitroso derivative of labetalol hydrochloride.

Fig. 3.5 Effect of volume of hydroxylamine hydrochloride solution on the formation of nitroso derivative of labetalol hydrochloride.
Fig. 3.6 A typical calibration curve for absorbance vs. concentration of labetalol showing the line of best fit (solid), confidence band (dotted) and the individual data points (■).

Fig. 3.7 A plot of absorbance vs. predicted values for labetalol analysis illustrating the linearity of the assay over the calibration range.

Fig. 3.8 Plot of residuals vs. predicted values showing that no trend could be observed in the data.

Fig. 3.9 Plot of Cook’s distance values vs. observation numbers indicating four influential observations in the regression coefficients.

Fig. 3.10 Plot showing the linear regression lines (solid) of the standard addition for three different samples with extrapolated lines (dotted) samples A (■), B (Δ) and C (○).

Fig. 4.1 Absorption spectra of reaction products (a, lisinopril - ninhydrin and c, lisinopril - ascorbic acid) and their reagent blanks (b and d, respectively).

Fig. 4.2 Effect of heating time on the lisinopril - ascorbic acid reaction

Fig. 4.3 Effect of volume of 0.2% ascorbic acid on the lisinopril - ascorbic acid reaction after 16 minutes of heating.

Fig. 4.4 Determination of the stoichiometric ratio between lisinopril and ninhydrin by the limiting logarithmic method. (●) Constant ninhydrin concentration and variable lisinopril concentrations. (○) Constant lisinopril concentration and variable ninhydrin concentrations.

Fig. 4.5 Absorbance–time curve for the varying concentrations of lisinopril and fixed concentration of ninhydrin (3.82 x10^{-3} M); (■) 2.26 x10^{-5} M; (●) 4.53 x10^{-5} M; (△) 6.80 x10^{-5} M; (▼) 9.06 x10^{-5} M; (○) 11.33 x10^{-5} M.
Fig. 4.6 A plot of initial rate of reaction vs molar concentration of lisinopril in lisinopril – ninhydrin method illustrating the linearity of the assay over the calibration range.

Fig. 4.7 A plot of rate constant vs final concentration of lisinopril and ninhydrin method illustrating the linearity of the assay over the calibration range.

Fig. 4.8 A plot of absorbance vs concentration at a fixed time of 10 minutes in the reaction between lisinopril and ninhydrin illustrating the linearity of the assay over the calibration range.

Fig. 4.9 A typical calibration curve for absorbance vs concentration of lisinopril in the reaction between lisinopril and ascorbic acid.

Fig. 5.1 A plot for the optimization of acid.

Fig. 5.2a Calibration graph for spectrophotometric method.

Fig. 5.2b Calibration graph for volumetric method.

Fig. 5.3a Standard addition method for spectrophotometric procedure.

Fig. 5.3b Standard addition method for volumetric procedure.