CONTENTS

Acknowledgement .. v
Abstract ... vi
List of Tables .. vii
List of Graphs .. viii
Contributions of the Author ix

Chapter – 1
Introduction ... 1

1.1 Introduction .. 1
1.2 Scope of the study 8
1.3 Conceptual Frame Work 9
1.4 Objectives of the Study 11
1.5 Statement of the Research problem 11
1.6 Research Design 12
1.7 Review of Literature 12
1.8 Limitations ... 17
1.9 Chapter Management 17

Chapter-2
Optimizing the Recruitment Cost by using
Queuing Theory Application 19

2.1 Introduction 19
2.2 Mapping ... 20
2.3 Assumptions and Notations 20
2.4 Performance Measures of the Model under
 Steady State Condition 22
2.5 Cost Analysis 24
2.6 Numerical Analysis 28
2.7 Conclusion .. 34
Chapter 3
Optimizing the Recruitment Cost based on Direct Recruitment and promotion with the help of Transportation Programming Application

3.1 Introduction 36
3.2 Mapping 37
3.3 Assumptions and Notations 39
3.4 Structure of the Recruitment Model 41
3.5 Outcome of the Mathematical Model 43
3.6 Numerical Example 43
3.7 Conclusion 46

Chapter 4
Optimizing the Recruitment Cost based on Promotion, Retention and Demotion with the help of Transportation Programming Application

4.1 Introduction 47
4.2 Notations 48
4.3 Necessary condition 49
4.4 Mathematical modeling 51
4.5 Example 53
4.6 Conclusion 55

Chapter 5
Optimal Portfolio Selection Using Preemptive Goal Programming Technique

5.1 Introduction 56
5.2 Notations and Assumptions 58
5.3 PGP Model Construction 59
5.4 Methodology 61
5.5 Conclusion 62
Chapter 6

Mathematical Model for Investment Decision Making

6.1 Introduction 63
6.2 Notations and Assumptions 64
6.3 The Structure of the Investment Analysis Problem 65
6.4 Mathematical Model 66
6.5 Solution Procedure 68
6.6 Outcome of the Mathematical Model 69
6.7 Numerical Example 69
6.8 Conclusion 72

Chapter 7

Model for measuring the corporate profitability performance and identifying the risk category of companies applying accounting beta [β] based on the CAPM model

7.1 Introduction 73
7.2 Previous Research 75
7.3 The Present Study 78
7.4 Data Description 79
7.5 Methodology 80
7.6 Analytical Results 81
7.7 Results of the test of hypothesis t-test 82
7.8 The Model 83
7.9 Limitations of the study 84
7.10 Summary and Conclusions 85

Chapter 8

Findings, Suggestions, and Conclusion

8.1 Findings 87
8.2 Suggestions 88
8.3 Conclusion 91

Bibliography