CONTENTS

1. **Introduction and review of literature**
 1.1 Introduction
 1.2 Review of literature
 1.2.1 Significance of fermented foods
 1.2.2 Positive health outcomes of breakfast consumption
 1.2.3 Idli and its properties
 1.2.3.1 Nutritional composition of idli
 1.2.3.2 Physico-chemical parameters of idli
 1.2.4 Rice - a staple food grain in idli making
 1.2.5 Black gram - a protein source in idli making
 1.2.6 Oligosaccharides in foods
 1.2.6.1 Conversion of polysaccharides into oligosaccharides
 1.2.6.2 Physiological properties of oligosaccharides
 1.2.6.3 Animal studies on oligosaccharides
 1.2.6.4 Applications of FOS in food formulations
 1.2.7 Modified atmosphere packaging

2. **Transition in the preparation and consumption of idli among the population of Puducherry**
 2.1 Introduction
 2.2 Materials and Methods
 2.2.1 Selection of area
 2.2.2 Selection of tool for data collection
 2.2.3 Selection of respondents
 2.2.4 Data analysis
 2.3 Results and discussion
 2.3.1 Socio-economic profile of the selected respondents
 2.3.2 Consumption pattern of breakfast among the selected respondents
 2.3.3 Preparation of idli at household level
 2.3.4 Preference for commercial idli batter against home-made batter
 2.4 Conclusion

3. **Texture optimization of idli**
 3.1 Introduction
 3.2 Materials and methods
 3.2.1 Materials
 3.2.2 Preparation of idli
 3.2.3 Experimental design
3.2.3.1 Response surface methodology
3.2.3.2 Optimization of idli
3.2.3.3 Instrumental color measurement
3.2.3.4 Texture profile analysis (TPA)
3.2.4 Statistical analysis
3.3 Results and discussion
3.3.1 Effect of rice varieties on rice batter volume
3.3.2 Effect of black gram on batter volume
3.3.3 Effect of ratios of rice to black gram dhal on batter volume
3.3.4 Response surfaces
3.3.5 Instrumental color measurement of idli
3.3.6 Texture parameters
3.3.7 Simultaneous optimization
3.4 Conclusion

4 Process optimization of idli using sensory attributes
4.1 Introduction
4.2 Materials and methods
4.2.1 Materials
4.2.2 Preparation of idli
4.2.3 Experimental design
4.2.3.1 Response surface methodology
4.2.3.2 Optimization of idli using RSM
4.2.3.3 Sensory analysis of idli
4.2.3.4 Quantitative descriptive analysis (QDA)
4.2.4 Statistical analysis of data
4.2.4.1 Principal component analysis (PCA)
4.3 Results and discussion
4.3.1 Desirable parameters of idli
4.3.1.1 Color
4.3.1.2 Fluffiness and sponginess of idli
4.3.1.3 Fermented aroma
4.3.2 Negative drivers of liking
4.3.2.1 Stickiness of the idli
4.3.2.2 Sourness of idli
4.3.3 Overall quality of the idli
4.3.4 Simultaneous optimization
4.3.5 Principal component analysis (PCA)
4.3.6 Optimization of texture and sensory attributes
4.4 Conclusion
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5.1</td>
<td>Introduction</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>5.2</td>
<td>Materials and methods</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>5.2.1</td>
<td>Nutritional composition of the idli</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>5.2.2</td>
<td>Determination of fatty acids and alcohols</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>5.2.3</td>
<td>Determination of oligosaccharides</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>5.3</td>
<td>Results and discussion</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>5.3.1</td>
<td>Nutritional composition of idli</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>5.3.2</td>
<td>Fatty acids and alcohols in optimized idli</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>5.4</td>
<td>Conclusion</td>
<td>97</td>
</tr>
<tr>
<td>6</td>
<td>6.1</td>
<td>Introduction</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>6.2</td>
<td>Materials and methods</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>6.2.1</td>
<td>Materials</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>6.2.2</td>
<td>Methods</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>6.2.2.1</td>
<td>Preparation of batter</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>6.2.2.2</td>
<td>Selection of packaging materials</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>6.2.2.3</td>
<td>Experiment I</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>6.2.2.4</td>
<td>Experiment II</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>6.2.2.5</td>
<td>Experiment III</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>6.3</td>
<td>Results and discussion</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>6.3.1</td>
<td>Respiration dynamics</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>6.3.2</td>
<td>Experiment I</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>6.3.3</td>
<td>Experiment II</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>6.3.4</td>
<td>Experiment III</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>6.4</td>
<td>Conclusion</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Executive summary and conclusion</td>
<td>132</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Practical implications / recommendations</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td></td>
<td>References</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Annexures</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>List of publications</td>
<td></td>
</tr>
</tbody>
</table>