A sincere honest and scholarly attempt was made by the investigator to study the relevant literature and research work pertaining to the present study.

A study of the relevant literature is an essential step to get full picture of what has been done and said with regard to the problem under study such a review brings about a deep insight and clear perspective of the overall field collection of relevant literature provides a basic understanding of problem and its depth. It is an answer to the question, “Why is the hypothesis?” of the present problem.

Agarwall (1975) remarks that the literature in any field forms the foundation upon which all future will be built. Mouly (1963) also observe,” the review of literature problems a greater understanding of the problems and its crucial aspects and ensure the avoidance of unnecessary duplication”. It is also provides a comparative data on the basis of which to evaluate and interpret the significance of one's findings.

The review of the literatures has been classified under the following headings:

1. Motor fitness and Physical fitness between rural and urban school boys, College men and women,
2. Influence of Socio economic status on physical, physiological and psychological variables and
3. Studies on in general.
4. Summary of the Literatures
1. **Motor fitness and physical fitness between rural and urban school boys, college men and women,**

Motor related fitness is the ability for an athlete to perform well in their specific sport (also known as specific fitness). They are: agility, coordination, power, balance and reaction time (speed is debatable). Health related fitness is the ability for a person to cope with the physical demands of everyday life (also known as general fitness). They are: cardiovascular endurance, speed, strength, flexibility and body composition.

Hatey (1972) conducted a study to investigate the effect of age on physical performance of elementary school boys in grades one through six by administering twelve motor performance tests to measure sprint speed, power, agility, reaction time, static balance, hip flexibility and elbow flexion, strength. He found a significant difference between grades levels on all twelve variables. The Scheffe’s test indicated that the largest performance increase was between grade one and two between grades five and six within middle grades providing plateau effect. The performance scores formed a curve linear relationships for all variables.

Brabant and Jose (1983) conducted a comparative study of anthropometrics and motor fitness measurement of Brazilian and American school children. The subjects taken for this study were 2342 boys and girls enrolled in a public school system in Brazil and America during 1982 school year. Health related physical fitness test battery and athletic ability tests were administered. The height and weight of the subjects were also undertaken that height and weight increased at approximately same rate and girls were significantly tall and heavier than boys during adolescence. American girls and boys were taller and heavier than Brazilian boys and girls.
Katzmarzyk, Malina and Beunen (1997) had done the study on the interrelationships among skeletal maturity, body size, strength and motor fitness were examined in American children 7-12 years of chronological age (CA). A total of 391 Black (184 boys, 207 girls) and 349 White (193 boys, 156 girls) children participated in the study. Biological maturity was assessed by the Tanner-Whitehouse II method, 20 bone skeletal ages (SA). Strength items included right and left grip strength, and pushing and pulling strength of the shoulders. Motor fitness items included a 35-yard dash, the standing long jump, and softball throw for distance. The standardized residuals of SA on CA (AG) were used to represent the effects of SA, independent of CA. Interaction terms were also computed by multiplying standardized values of stature (ST), body mass (MA), and AG together in all combinations. Regression analyses showed that the strongest predictor of strength was MA, while AG was the best predictor of motor performance. The interaction terms were also significant predictors of performance, explaining between 2% and 9% of the variance in 19 of the 41 significant regressions. The results highlight the complexity of the interrelationships among body size, biological maturation, strength and motor fitness. The effects of SA in children 7-12 years of age are expressed mainly through body size, but SA apparently influences motor fitness more so than muscular strength.

Booth et al (1999) Examined the fundamental motor skills among children and adolescents is a potentially important contribution to satisfying participation in sports, games and other physical activities and may enhance the development of an active lifestyle. However, few attempts have been made to determine the prevalence of fundamental motor skill mastery among young Australians. The NSW Schools Fitness and Physical Activity Survey, 1997 (N=5518) randomly selected schools proportionally from all three education sectors and selected students in Years 4, 6, 8 and 10. Performance on six fundamental motor skills (run, vertical jump, catch, overhand throw, forehand strike and kick) was
assessed qualitatively. The prevalence of mastery and near mastery of each skill and mastery of each skill component is reported for boys and girls in each school year. The findings indicate that the prevalence of mastery and near mastery of each of the fundamental motor skills was generally low. There were no differences between students from urban or rural schools and the prevalence of skill mastery was directly associated with socioeconomic status more consistently among girls than among boys. Greater curriculum time and resourcing and training of teachers is required to increase the proportion of students who have mastered the skills fundamental to common sports, games and other physical activities.

Fisher (1986) tested 400 Junior High School Boys with the 7 item California Physical performance test, which includes pull-ups, bent knee sit-ups four times, standing Broad Jump, 50 yards dash, shuttle run, 600 yards run, and soft ball throw for distance. One group trained in a comprehensives weight resistance training programme the other group participated in the regular physical education classes, which included vigorous calisthenics involving the major muscle group of the body for the period of 10 weeks each consists of 3 days. The physical education group improved significantly on the tests, sit-ups, 600 yard run, shuttle run, and soft ball throw for distance.

Pena Reyes, Tan and Malina (2003) conducted a study on the physical fitness of school children resident in an urban colonia and in a rural indigenous community in Oaxaca, southern Mexico, was compared. Two measures of performance-related fitness (standing long jump, 35-yard dash [32 m]) and four measures of health-related fitness (grip strength, sit and reach, timed sit-ups, distance run) were taken on 355 rural (175 boys, 184 girls) and 324 urban (163 boys, 161 girls) school children, 6-13 years of age. Urban children were significantly taller and heavier than rural children. Absolute grip strength did not consistently differ between rural and urban children, but when adjusted
for age and body size, strength was greater in rural children. Explosive power (standing long jump) and abdominal strength and endurance (timed sit-ups) were better in urban than in rural children without and with adjustment for age and body size. Urban-rural differences in running speed (dash) and flexibility (sit and reach) varied by age group and sex. Younger rural children and older urban girls performed better in the distance run, whereas older rural and urban boys did not differ in endurance. The size advantage of urban children does not necessarily translate into better levels of performance- and health-related physical fitness. The observed differences may be related to activity habits associated with school physical education and lifestyle in the respective communities.

Bayer, Bolte and Morlock (2009) The Objective is to distinguish pre-school children with high and low physical activity, and its association with childhood overweight/obesity. Physical activity is an important determinant of energy balance. However, its impact on overweight/obesity has proved difficult to measure in pre-school children and few studies have found significant associations. A set of simple questions was used to distinguish pre-school children with high and low physical activity, and the association of this classification with childhood overweight/obesity and performance in an established motor test was investigated. The design used was survey, cross-sectional. Weight and height were measured in 12 556 children taking part in the obligatory school entrance health examination 2004-5 and 2005-6 in three urban and three rural Bavarian regions. Their parents were asked to answer a questionnaire with a set of questions on physical activity. The Results showed that the mean age of the children evaluated was 5.78 (sd 0.43) years, 6535 (52.1 %) were boys. Physically active children were less likely to be overweight (OR = 0.786, 95 % CI 0.687, 0.898) or obese (OR = 0.655, 95 % CI 0.506, 0.849) and achieved 6.7 (95 % CI 5.8, 7.7) % more jumps per 30 s than less active children in a motor test, adjusted for a number of potentially confounding variables. Based
on the classification of pre-school children as physically active or not it may be concluded that there are significant associations with overweight/obesity and a motor test. Once further validated, this classification might provide a valuable tool to assess the impact of physical activity on the risk of childhood overweight and obesity.

Zhao et al (2005) The Objective of the study is to analyze the motor performance status students of Han nationality in fifteen provinces in China. Totally, 161,804 students of Han nationality aged from 7 to 18 years old were involved in the Chinese Surveillance on Students' Physical Fitness and Health in 2004. Motor abilities were accessed with the aid of gripping power, 50 m dash, standing long jump, and 1-min sit-ups. Based on general statistical description, principal component analysis and linear regression, the development characters of students' motor performance were explored. This results showed some characters similar to those of last ones: motor capability was improved in correlation with age; boys did better than girls, the difference between 18 year-old rural boys and rural girls was 15.3 kg, 2.0 s, 58.6 cm, 8.7/min; the urban students performed better than the rural ones, the difference between 15 year-old urban boys and rural boys was 0.9 kg, -0.2 s, 3.5 cm, 3.5/min. The first principal component might represent the 4 tests greatly. Regression analysis on principal component quantitatively interpreted the influence of factors such as age, sex and area. It may be concluded that the general principles of exercise quality development of students are still in work. Principal component analysis should be adequate and convenient in motor performance analysis.

Wolanski et al (1992) a total of 65487 girls and 62002 boys aged from 7 to 19 years were examined in towns and villages all over Poland. Coefficients of multiple regression and percentage of explained variation in body build and motor fitness (somatic-fitness traits) of youth were calculated in relation to the variation in economic activity (as measured
by electric energy use) and in demographic properties of 98 regions of Poland (urban and rural areas of 49 provinces separately). Calculations were made separately for girls 7-8, 9-10, 14-15, and 18-19 years old and for boys 7-8, 11-12, 16-17, and 18-19 years old, also for increases between these age classes in towns and villages separately. This is an extension of the analysis based on the correlation of these traits in 9.5-year-old girls and 11.5-year-old boys (Wolański et al. 1990). The regression of somatic-fitness traits on some demographic and economic properties of regions (regional factors) is most significant for rural boys, a little less significant for rural girls, and it is weakest for urban boys. The largest differences in the regression of somatic-fitness traits on regional factors between age classes were noted for rural girls, moderate for urban youth, and the smallest for rural boys. Dependence of somatic-fitness traits on regional factors increased with age. It was most clearly expressed in urban boys, and least clear in rural girls. But the strongest relationships at an age of 18 years occurred only in towns (for both sexes), whereas at an age of 9 years for rural girls and at an age of 16 years for rural boys. The analyzed traits of body build and physical fitness in youth were most strongly related to the percentage of urban population in a region, especially for urban and rural boys and rural girls. In urban girls, the most important factor was migration rate. Generally, the second most important factor influencing somatic-motor traits was electric energy use per 100 km². The strongest effect of regional factors on motor-fitness traits was recorded for runs, standing long jump, and sit-ups, whereas running broad jump (normalized on stature) and trunk flexibility were least affected. Among body build traits, Kaup index and chest circumference were most affected, whereas arm circumference (normalized on stature twice stronger), and chest flexibility were least influenced. For example, the strongest relationship was noted between Kaup index (35.1%) in 9.5-year-old girls and regional infant death rate.
Pekkarinen et al (1989) A total of 173 Finnish boys, comprising 94 cross-country skiers and 79 controls, who were in turn divided into two groups, were studied during three successive years. In the beginning of the study the boys were 10 to 14 years old. The young male skiers and the boys in the first control group lived mostly in rural communities in Eastern Finland, and the boys in the second control group (urban boys) were from the city of Kuopio. Measurements of height, sitting height and weight, sum of skin fold thicknesses (biceps, triceps, sub scapular and suprailiac), length of upper and lower extremities, and circumferences of upper arm and leg were taken. Body mass index was calculated and sexual maturity estimated according to Tanner’s scale. In the motor fitness tests, the maximum number of push-ups, displacement of center of gravity in a single vertical jump (without pre-stretching) and the mechanical power in a series of 30 jumps were included. In general, there were no significant differences in anthropometry, except for the lower sum of skin fold thickness in skiers in comparison to controls. At the beginning of the study, the pubertal male skiers were slightly taller than the control boys, but during the follow-up, the difference disappeared. In motor fitness tests, the young skiers achieved better results than the controls. The difference was most prominent in push-up tests, and was seen already in the prepubertal boys. In general, motor fitness was directly and about equally related with age, body size and sexual maturity. It was inversely related to the sum of four skin folds. During growth, the change in the anaerobic power of leg muscles was directly and more strongly related with change in sexual maturity than with the change in body size.

Shukla (1991) the present study 120 sports women, 60 urban, 60 rural were included. They hailed from the state of Uttar Pradesh and Punjab. They participated in Hockey, basket ball, cricket, Kho-Kho, volleyball and athletics. Urban boys participated in mini national, State and National games while rural boys at the inter-collegiate rural tournament and National games. Their age group varied between 13-22
years. For comparison, they have been divided into three groups. a) 13-16 years b) 17-19 years c) Above 19 years. The height and weight recorded and AAHPERD Test were conducted which consist of following: Short ball throw, sit-ups, pull-ups, shuttle run, 50 yard dash, standing broad jump and 600 yard dash. The result revealed that in standing broad jump the sportsman at very poor result indicating very low explosive capacity to the upper limb muscles. The rural sports women were poor in shuttle run indicating the minimum agility in them. The rural girls of A and B groups were observed possesses poor aerobic muscular power. As revealed by 50 yard dash run the overall performance of urban sportswomen were higher than the rural counterpart and further analysis as observed with C group on urban sportswomen were comparatively higher than 50 yard dash. Standing broad jump, shuttle run and sit-ups with this lower age groups. Further in Uttar Pradesh, both rural and urban were very efficient. The overall competency of urban sportswomen than the rural counterpart might be attributed by better coaching and other facilities.

Bucher (1975) says that in order to enjoy sports, master the necessary skills and participate safely a person must be physically fit. The popular slogan “get fit by playing should be get fit to play safely”. Physical fitness is the capacity to carry out reasonable and various forms of physical activities without being unduly tried and include qualities important to the individual health and the well being. Increasing prevalence of overweight in youth has been well chronicled, but less is known about the unique patterns and risks that may exist in the rural and urban environments. A better understanding of possible rural – urban differences in physical activity profiles may facilitate the development of more targeted physical activity interventions. In this study, the participants (1,687 boys: 1,729 girls) were recruited from fourth, fifth and sixth grade classes from urban areas, small cities and rural areas. According to this method, Multi level modeling analysis was used to examine rural – urban differences in physical activity and
prevalence of overweight. Physical activity was assessed by self-report and body mass index was calculated from measured height and weight. The findings of the study were prevalence of overweight was higher among rural children (25%; P<.001) than children from urban areas (19%) and small cities (17%) Urban children were the least above overall (Cohen’s d=-0.4), particularly around lunch time while at school (d=-0.9 to -1.1). Children from small cities reported the highest levels of physical activity. The result of this study suggests there are rural-urban differences in children’s prevalence of overweight and physical activity even within a fairly homogeneous Midwestern state. The physical fitness of school children resident in an urban Colonia and in a rural indigenous community in Oaxaca, southern Mexico, was compared. Two measures of performance-related fitness (standing long jump, 35-yard dash (32m) and four measures of health-related fitness (grip strength, sit and reach, timed sit-ups, distance run) were taken on 355 rural (175 boys, 184 girls) and 324 urban (163 boys, 161 girls) school children, 6-13 years of age. Urban children were significantly taller and heavier than rural children. Absolute grip strength did not consistently differ between rural and urban children, but when adjusted for age ad body size, strength was greater in rural children. Explosive power (standing broad jump) and abdominal strength and endurance (timed sit-ups) were better in urban than in rural children without and with adjustment for age and body size. Urban-rural differences in running speed (dash) and flexibility (sit and reach) varied by age group and sex. Younger rural children and older urban girls performed better in the instance run, whereas older rural and urban boys did not differ in endurance. The size advantage of urban children does not necessarily translate into better levels of performance-and health-relate physical fitness. The observed differences may be related to activity habits associated with school physical education and lifestyle in the respective communities.
Dollman, Norton, Tucker, (2002) the aim of this study was to compare urban and rural South Australian primary school children on measures of anthropometry, fitness, and environmental mediators of physical activity. The sample was comprised of 445 urban and 205 rural boys and 423 urban and 158 rural girls, all age 10-11 yrs at the time of testing. After controlling for socioeconomic status and ethnicity, rural girls and boys were faster over 1.6 k than their urban counterparts while rural girls were also faster over 50 m. Rural residence independently predicted participation in organized activity, increasing involvement in club sport, and decreasing involvement in school sport. Rural children reported a greater likelihood of participating in two or more physical education classes per week. It is evident that urban and rural South Australia differs in ways which impact on fitness and physical activity patterns of upper primary age children.

Tinazci and Emiroglu, (2009) conducted a study to investigate the effects of environmental factors on physical fitness of rural and urban children. To reveal the differences between physical fitness of children living in urban and rural districts of the Turkish Cypriot population, 3939 nine- to eleven-year-old male primary school children from 90 schools of North Cyprus were tested. Testing procedures were similar to the Eurofit tests. The results showed that body mass index and skinfold thickness were higher in the urban children (P < .05). Differences in cardiopulmonary and motor fitness were also found between groups. In addition, flexibility and muscle endurance were significantly higher in the rural children. The significantly lower flexibility, muscle endurance, and strength of urban children might indicate a lower habitual physical activity level.

Zdirenc et al (2005) conducted a study to investigate the effects of environmental factors, lifestyle and leisure time activities on physical fitness in rural and urban children. A cross-sectional observational study of 98 rural and 74 urban healthy children (aged 9-11 years) was
conducted in Turkey. A questionnaire was used in collecting information about the children's physical activity habits and their school's facilities. The physical fitness of children was evaluated with EUROFIT test battery. The rural children preferred to play football and volleyball while the urban children had a tendency to prefer indoor sports. The percent of urban children not involved in any sports activity was 35%, while this rate was 30.6% for rural children. It was also found that the urban children watched TV more than the rural children (13.4 ± 2.7 h/week, 10.9 ± 2.7 h/week, respectively). The results showed that body mass index and skin folds thickness were higher in the urban children (P < 0.05). There were no significant differences in the hip-waist ratio or the hip and waist circumference between the two groups. In cardiopulmonary and motor fitness, no difference was found between the two groups. In contrast, flexibility and muscle endurance were significantly higher in the rural children. The children living in the urban areas were more inactive and obese, which resulted in a decrease in their flexibility and muscle endurance fitness.

Clarke and Clarke (1989) Physical fitness therefore is an essential quality in humans. School children, as well as their parents may not need their muscle are development and strength required of their pioneering forefathers, whose very lives often depended upon them; but in intellectual as in physical work, a sound heart and lungs, good digestion and a vigorous, well developed physique area still great assets for effective accomplishment and for living a satisfying life.

Clarke and Clarke (1976) Physical fitness is the capacity to perform activity. The greater the physical fitness, the better physical endurance and precision of movement will, which are essential for our daily work of life. The greater the physical fitness, the longer can a person keep and the more efficiently will be in performance and his capacity for recovery from fatigue.
Physical fitness is not only the most important key to a health life but also the basis for dynamic and creative life.

Dumith and Rombaldi (2008) although the benefits of physical fitness on health and prevention of diseases are extensively reported in the literature, there are few investigations about this theme, mainly among children and adolescents. Therefore, the aim of this study was to analyze the health-related physical fitness (HRPF) components according to characteristics such as sex, age, type of school (public or private) and geographic area of the school (urban or rural), in individuals aged 7-15 years. The data collected belong to the Project Esporte Brasil (Brazil Sport Project) (PROESP-BR), and the HRPF components assessed were: body mass index (BMI), flexibility (“sit-and-reach” test), localized muscular resistance (LMR) (one-minute sit-up test) and aerobic capacity (nine-minute running test). The sample comprised 665 students, randomly selected from elementary schools of the Rio Grande County, Brazil. To compare the means of the measures and the tests according to the independent variables, simple and multivariate linear regression was used. Amongst the main results, it can be emphasized that the HRPF components were more associated with biological characteristics (sex and age), with no expressive differences by type of school, nor by geography area of school (indicators of socioeconomic level). Further studies are needed for the establishment of national reference parameters of HRPF of children and adolescents.

Girish (1989) tested hundred subjects from the rural area and hundred students from the urban area high school boys to compare the Physical fitness AAHPERD youth fitness test and NPED test were administered to obtain the physical fitness level of the subjects he concluded that there was no significant difference in physical fitness level obtained from AAHPERD youth fitness test between rural and urban high school boys.
Shephard (2007) large amounts of motor performance test data have been collected in Canada, as in Europe and other countries, but even where representative population samples have been selected, interpretation of the findings is difficult, and most conclusions remain tenuous. Urban Canadian children apparently showed a small increase of physical performance from the mid-1960s through to about 1980, related in part to intensive governmental promotion of physical fitness and changes in gender roles of female students over this period. The two most recent decades have been marked by a shift of focus to health-related tests, the results showing a small but progressive deterioration in health-related fitness, with an accumulation of body fat, as documented by increases in body mass indices and skin fold thicknesses. In 1970, the fitness levels of urban children were substantially inferior to that of Inuit students, living in the high arctic and practicing a traditional, physically active lifestyle. However, by 1990, the Inuit children had adopted many of the sedentary habits typical of Canadian city dwellers, and had lost much of their previous advantage. At this stage, most Canadian students were not reaching their fitness potential, but their physical condition could be enhanced - in urban centers by an augmented physical education programme, and in the Inuit community by participation in programmes of active leisure. At present, Canadian students seem to be somewhat more fit than those in the US, but less fit than their peers in some European countries. Nevertheless, international comparison of Canadian data is currently hampered by differences in measurement techniques and failure of many investigators to test representative population samples.

Al-Ansari (1998) the age at which normal children acquire developmental milestones is affected by environmental factors, including place of residence. The objectives of this study were to demonstrate variations in child development between urban and rural settings, and to describe the effect of way of living in either setting on normal child development. The Revised Denver Pre-screening
Developmental Questionnaire (R-PDQ) is the tool used in the study. The sample included 1219 normal children selected randomly from urban and rural settings of Medinah, Western Saudi Arabia. Results: Results ascertained the ages at which children achieved 104 developmental R-PDQ items. Comparison has shown clear differences between child development in rural and urban children. Differences were more apparent in fine motor and language abilities. Positive and negative effects of urbanization were also demonstrated in children in both settings of Madinah. Stimulation and encouragement of preschool children, and better preparation for school entry were also recommended especially for rural children in Madinah. The authors also recommended "adjustment" of developmental screening tools before applying them to children in different cultures and settings. Appropriate developmental screening and intervention programs should be sought, not only to identify delayed children, but also to promote sound development.

Joens et al., (2003) the increasing prevalence of overweight in youth has been well chronicled, but less is known about the unique patterns and risks that may exist in rural and urban environments. A better understanding of possible rural – urban differences in physical activity profiles may facilitate the development of more targeted physical activity interventions. Participants (1,637 boys; 1,729 girls) were recruited from fourth, fifth and sixth grade classes in schools from urban areas, small cities and rural areas. Multi level modeling was used to examine rural – urban differences in physical activity and prevalence of overweight. Physical activity was assessed by self – report and body mass index was calculated from measured height and weight. Prevalence of overweight was higher among rural children (25% P <.001) than children from urban areas (19%) and small cities (17%). Urban children were the least active overall (Cohens’ d= -0.4), particularly around lunch time while at school (d= -0.9 to -1.1). Children from small cities reported the highest levels of physical activity. The results of this
study suggest there are rural–urban differences in children’s prevalence of overweight and physical activity even within a fairly homogenous Midwestern State.

Tsimeas et al., (2003) The aim of this study was to investigate physical fitness in relation to fatness in urban and rural Greek children by means of allometric scaling. The sample consisted of 360 (189 urban and 171 rural; age 12.3 +/- 0.42 years) boys and 247 (125 urban and 122 rural; age 12.3 +/- 0.43 years) girls. The sample was highly representative (32 - 64%) of all 12 year old children registered in the prefecture of Trikala, Greece. All volunteers were assessed for BMI and % body fat, as well as sit and reach, basket ball throw (BT), vertical jump (VJ), handgrip strength (HG), 40 m sprint, agility run, and 20 m shuttle run. To correct for possible associations between fatness and fitness, a single cause allometric scaling was employed using the natural logarithms (ln) of fitness parameters that were significantly correlated with the ln body fat. Independent – samples/tests revealed that VJ (p<0.05) was significantly higher in boys living in urban settings compared to their rural counterparts. Similarly, BT was found to be significantly better (p<0.05) in urban girls, whereas HG was significantly higher (p<0.05) in rural girls. Considering that (a) only three out of the 14 possible cases (seven fitness parameters for boys and seven for girls) were significantly different between urban and rural children and (b) these differences were not uniformly distributed in children living in either urban or rural environments, it is concluded that the place of residence has no clear impact on physical fitness as studied herein.

Mehtap et al., (2005) In a crowded modern world it is vital that the promotion of sports environmental and public health outcomes. This study aims to investigate the effects of activities on physical fitness in rural and urban children. A cross – sectional observational study of 98 rural and 74 urban healthy children questionnaire was used in collecting information about the children’s physical activity children was
evaluated with EUROFIT test battery. The rural children preferred to play football and volleyball while the urban children percentage of urban children not involved in any sports activity was 35% while this rate was urban children watched TV more than the rural children (13.4 ± 2.7 hours per week. 10.9 ± 2.7 hours) mass index and skin folds thickness were higher in the urban children (p<0.05). There was the hip and waist circumference between the two groups. In cardio pulmonary and motor groups. In contrast, flexibility and muscle endurance were significantly higher in the rural areas. The children living in the urban areas were more inactive and obese while endurance fitness.

Borremans et al., (2009) Physical fitness and physical activity are vital for a healthy lifestyle for individuals with and without disabilities. Not only has low motor and physical fitness a negative effect on daily life of individuals with Asperger syndrome (AS), at the same time it increases the likelihood of becoming less physically active. To compare motor fitness and health related physical fitness and physical activity levels in adolescents with and without AS. Thirty adolescents, diagnosed with AS (X = 17.2 ± 1.2 years) agreed to participate in the study together with thirty age and gender matched neuro typical peers (X = 16.9 ± 0.8 years). Physical fitness evaluations were done using the EUROFIT test (Oja & Tuxworth, 1995). In addition, a research questionnaire regarding the participants’ physical activity during leisure time was administered to all participants (Baecke et al. 1982). A 2x2 multivariate analyses of variance, with standard scores on all EUROFIT subtests, were conducted to assess whether differences between groups (AS vs. controls) and genders on fitness items exist. Differences between the groups’ average scores on the Baecke questionnaire were analyzed using t-test for independent groups. Adolescents with AS scored significantly lower than the comparison group on all sub tests of motor skill (MSRF) and health related (HRF) physical fitness in the EUROFIT (IMSRF)=.428.
F(1,58)=18.37(p<.001) and (IHRF)=.432, F(1.58)=11.63(p<.001). Effect size across items ranged from $h^2 = .09$ to .53. Adolescents with AS were less physically active than adolescents in the comparison group (p<.001). Adolescents with AS have lower levels of physical fitness in balance, co-ordination, flexibility, muscular strength, running speed and cardio – respiratory endurance and have higher levels of physical inactivity when compared to age matched peers. Engagement in physical activities and individualized training adapted for individuals with AS is recommended.

2. Influence of Socio economic status on physical, physiological and psychological variables

A child with good or high socio-economic status will have assessed to better education, food and nutrition health care environment, physical education facilities and opportunities which will affect their physical fitness, motor ability, health status and academic achievements. Education and socio-economic status are closely related, secondary educational is very important stage of education in the education system of any country. Majority of people will have either lower secondary stages or higher secondary stages their final educational career. Hence it is a stage, which is concerned with the majority of population. Murthy (1982)

Frost (1971) explained that, “An individual socio-economic status may influence their opportunity for participation, his desire to excel, his choice of activity and his success”

Tomal and Margwall (1979) socio-economic status refers to a person’s position in any group, society or culture as determined by wealth, occupation education and social class. Socioeconomic (SES) is an economic and sociological combined total measure of a person’s work experience and of an individual's or family’s economic and social
position relative to others, based on income, education, and occupation. When analyzing a family’s SES, the household income earners’ education and occupation are examined, as well as combined income, versus with an individual, when their own attributes are assessed. Socioeconomic status is typically broken into three categories, high SES, middle SES, and low SES to describe the three areas a family or an individual may fall into. When placing a family or individual into one of these categories any or all of the three variables (income, education, and occupation) can be assessed.

Jonathan (2007) conducted a study that the wealth, may also be examined when determining socioeconomic status. Additionally, income, occupation, and education have shown to be strong predictors of a range of physical and mental health problems, ranging from respiratory viruses, arthritis, coronary disease, and schizophrenia.

Christian (2005) Income refers to wages, salaries, profits, rent, and any flow of earnings received. Income can also come in the form of unemployment or workers compensation, social security, pensions, interests or dividends, royalties, trusts, alimony, or other governmental, public, or family financial assistance. Income can be looked at in two terms, relative and absolute. Absolute income, as theorized by economist John Maynard Keynes, is the relationship in which as income increases, so will consumption, but not at the same rate. Relative income dictates a person or family’s savings and consumption based on the family’s income in relation to others. Income is a commonly used measure of SES because it is relatively easy to figure for most individuals. Income inequality is most commonly measured around the world by the Gini coefficient, where corresponds to perfect equality and means perfect inequality. Economic inequality in the US is on the rise, leaving low income families struggling in society. Low income families focus on meeting immediate needs and do not accumulate wealth that could be passed on to future generations, thus increasing inequality.
Families with higher and expendable income can accumulate wealth and focus on meeting immediate needs while being able to consume and enjoy luxuries and weather crises.

Scott and David (2005) Occupation is the most difficult factor to measure because so many exist, and there are so many competing scales. Many scales rank occupations based on the level of skill involved, from unskilled to skilled manual labor to professional, or use a combined measure using the education level needed and income involved. The jobs that were less valued were also paid significantly less and are more laborious, very hazardous, and provide less autonomy.

Cauley et al (1991) conducted a study on physical activity by socio-economic status in two population based cohorts, his findings show that in both high and low socio-economic status individuals activity was inversely associated with age and was higher in males than females. The relationship of physical activity to socio-economic status differed depending on the dimension of activity assessed participation in sports was reported more frequently in high status in females and males. Socio-economic status was a significant predictor of walking activity in females with low status females reported more walking. The number at hours spent in moderate activities was greater, but the number of hours spent in light activity was lower, in low status makes. There was little difference by socio-economic status in the complete activity score average annual kilocalories per week.

Rarick (1973) says socio-economic status or background is frequently implicated as the significant factor affecting the activity pursuit and performance level of children. This was pointed at earlier where date were presented which suggested that lower socio-economic and for disadvantaged children of more attend families such an atmosphere might be conducive to greater freedom of activity and opportunity for practices in movement experience.

Magotra (1987) in his study, correlated intelligence, education, academic achievement and socio-economic status and found that the mental health of boys and girls appeared to be considerably influenced by the two factors, namely, intelligence and physical health.

Kamphuis (2008) examined the contribution of neighborhood, household and individual factors to socio-economic inequalities in sports participation in a multilevel design. Data were obtained by a large-scale postal survey among a stratified sample of the adult population (age 25-75 yr) of Eindhoven (the fifth-largest city of the Netherlands) and surrounding areas, residing in 213 neighborhoods (N=4785; response rate 64.4%). A combination of neighborhood, household and individual factors can explain socio-economic inequalities in sports participation to a large extent. Interventions and policies should focus on all three groups of factors simultaneously to yield a maximal reduction of socio-economic inequalities in sports participation.

Stone (1978) conducted research with Negro and white boys (N=11.2) aged 10 through 12 years, who were arranged into 4 matched groups, on the basis of age and Physique. And an Upper middle and lower middle Socio-Economic Status-Negro boys were significantly superior in sit-ups, broad-jump, 50 yard dash, shuttle run, and soft ball throw, the soft ball throw was the only item showing the Fellable difference between the two social groups, with the lower middle being superior. There were no significant differences found on the other seven items.

Kumar and Singhal (1987) to know the relationship between the menstrual ages in relation to socioeconomic status of 180 students (girls) at random selected from two different schools, 90 from each. The distinct groups were being made on the basis of the occupation, school in which they study, and income of their parents. It has been observed
through the study that, the menstrual age in the upper socio economic
group is higher than that of the lower socioeconomic group.

Shine (1976) conducted a study with three selected variables
namely socioeconomic status, impact of parental support and the
‘pipeline follow to develop form a Neo type athlete to Elite, Data were
obtained by using questionnaires mailed to 112 Olympians. The data
revealed that a vast majority of athletes come from solid, middle and
upper class families. The result of the study indicated that, if a person
had the desire and ability to become world class winner athlete in U.S.
there are specific social situations that would greatly aid in
developmental process.

Bhatnagar, Singhal and Grover (1988) undertook a study to
examine the role of socio-economic status in the growth and
development of 155 female children, subjects ranging in age from 6 to
16 years; 80 from the higher socioeconomic group, and 75 from the
lower socio-economic group. Each subject was measured for 10 tomato
type variables. The results showed that upper socio-economic
conditions had a better physical development and better nutritional and
hygienic status.

Greendorfer (1977) investigated the socio-economic variables
that influence female participation in various types of teams, individual
and mixed sports she hypothesized that sport type would be a function
of socio-economic status. The analysis of the social class data which
included two measures education and occupation revealed that team
sports participants were identified with lowed socio-economic identified
with higher socio-economic status.

In a related study, **Loy** (1969) found that UCCA graduated
athletes on the nature of their families and found that 50% of wrestlers,
footballers and basket ball players belonged to families where fathers
did not complete high school education. The investigator further reported that 50% of the wrestlers, 33% of the baseball players, trackmen and football players; 16% of basket ball players; 13% of the swimmers and tennis players came from families where fathers were blue–collar workers.

Greendorfer (1977) has found that socio–economic status variables are significantly related to sports involvement.

Sorenson (1977) argues that higher socio–economic levels enable parents to provide greater nourishment for their children’s egos and instill a sense of confidence. Children from these classes are socially and economically more secure and have fewer worries. They are also more aggressive and dominant on the average than children of the less favoured socio–economic levels. The socially and economically favoured children have more social poise and more interests in music and other arts.

Backmand et al. (2006) determined the role of physical activity in the physical and psychological functioning of daily living in a cohort of former elite male athletes representing different sports and controls of middle and old age. Subjects were 664 former elite male athletes (mean age 64.4 years) and 500 controls (62.0 years) in middle and old age. Logistic regression was used for longitudinal as well as cross – sectional analyses to estimate odds ratios (OR) for poor physical and psychological functioning of daily living in relation to recreational physical activity adjusted for age, sport group, life–style, BMI, mood, chronic diseases, personality characteristics, life–events and socio–economic status. This study suggests that an increase in physical exercise supports physical daily functionality. A specific history of sports participation promotes psychological well–being at an older age.
Weiss and Struck (2006) examined the differences in social influence and fear of failure. In the sport domain, not only parents but also coaches, team mates and best friends influence athletes perceptions of competence, feedback and competitive outcomes. Participants were 207 male and female Division I college athletes ranging in age from 17 to 24 years. Multivariate analysis of variance revealed gender differences in fear of failure with female athletes reporting significantly higher fear of experiencing shame and embarrassment and fear in devaluing one’s self - estimate. Upper and low quartiles on fear of failure were then compared on perceptions of obligation to significant others to continue and types of social support. Those athletes reporting the highest fear of failure also felt greater pressure and obligation from their parents and best friend to continue sport participation than did low-fear-of-failure athletes. Additionally, the low-fear-of- failure group reported higher perceptions of parent admiration than did the high- fear- of – failure athletes. These findings support Conroy’s (2004) contentions that fear of failure could be the result of interactions with significant others. Future research should continue to examine the role of parents, coaches and peers via social support and/or perceived pressure in relation to fear of failure in athletes.

Brawley et al. (2003) studied social influences on individuals participating in physical activity are diverse and vary from the individual to the group level. These influences have been studied in cross – sectional fashion across the life span. The focus of research attention has been on their influence at a specific point of time during the individual’s life. However, common as well as unique social factors tend to be influential depending on the outcome variables being studied (e.g. cognitions, affect, behaviour). In this symposium we present data on selected social influences that have recently been examined in the study of the physical activity of children (Horn), adolescents (Spink) and older adults (Brawley). The purpose of the symposium reflects an
attempt to (a) draw attention to the need for broader and more conceptual thinking about (Physical activity participation across the life span because of physical activities relationship to growth and development, health and well-being; and (b) offer challenges for researchers who wish to see individuals pursue physically active lifestyle throughout life. Dr. Thelma Horn will present her research on relating parents’ gender-role stereotypic beliefs to their children’s physical activity beliefs, values and behaviours. Dr. Kevin Spink will present data from the Saskatoon in Motion community based research project under way in Canada. Dr. Larry Drawley will present data from research on both asymptomatic and chronically-diseased older adults as a basis for discussion about selected social influences.

Spink et al. (2003) examined whether different types of family influence (i.e. conformity, compliance, obedience and modeling) that are associated with physical activity differ on the basis of SES in youth and adolescents. Eighty-eight youth from a midsized Canadian city who were involved in a summer youth programme participated in the study. Census data on the neighbourhood where the youth programmes were located was used to classify participants as high or low SES. Participants (mean age 12.6 years, +/- 2.07) completed a questionnaire asking them which family social influences were associated with being active. Discriminant function analysis revealed that four forms of family influence differentiated between high and low SES groups (Wilks’ X = .817, f (4) = 17.02, p = 0.000, canonical r = .428). Based on the standardized discriminant – function co-efficients, in the low SES group family conformity, family obedience and family modeling were associated with being active, while in the high SES group family compliance was associated with being active. The current results provide preliminary support for the idea that family influences associated with physical activity may differ based on socio-economic status, suggesting that future interventions designed to increase physical activity may need to target different family influence correlates.
Rosenkranz and Estabrooks (2000) focused on the stress buffering effects of social support, little research has examined its relationship with performance or quality of life in elite athletes. The purpose of our investigation was to examine the above relationships within a sample of elite Ironman triathletes. Ninety-two participants (81.5% male, average age = 33.5) at the 1999 Ironman Florida Triathlon completed a questionnaire prior to completion of the event. No social support variables were associated with mood disturbance. These findings show that provisions of social support have differential relationships with both performance and quality of life variables, based upon the source from which they are provided. Hence, performance enhancement and improvements in quality of life may be obtained through identifying the appropriate balance and sources of social support.

3. Studies In General

Grewal (1991) investigated physical fitness, attitudes towards physical activity and adjustment among university student across Socio-Economic status, his sample for the study consisted of 549 subjects study at under graduate level. These were selected form 10 colleges’ affiliated to the Punjab University, Chandigarh. The data for Physical Fitness were collected through the AAHPER youth fitness tests comprising pull-ups, sit-ups, shuttle run, standing broad jump 50 yards run, 2600 yards run. The other tools used for collecting data were (i) Bhullar physical activity attitude scale (1976) and (ii) the Bell Adjustment Inventory.

Venkateswaralu (1975) in his studies used the freshman’s battery of physical fitness tests (Fleischmann’s 1964), which were administered on three equal groups at 13,14 and 15 years of age. Each group consisted of 50 boys. These students were selected at random.
From 7 different school of Chennai City from the total number of students available from the grade III. The total time required for completion of those experiments was 21 days. The collected data were converted into percentiles with the help of norms given for different age groups by Fleischmann (1964). These percentiles were then converted to index points with the help of percentiles equivalence and fitness index point given by Fleischmann (1964). F.I = Total index points Number of tests x 10. The variance ratio in physical fitness between 13-14 and 13-15 year age groups were 15.87 and 23.52 respectively which were significant at 0.01 level of confidence. The variance ratio in physical fitness of 14 and 15 years old boys was 2.23, which was not significant. The mean physical fitness of 13, 14 and 15 year old boys was 33.5, 29 and 27 respectively. It was thus found that 13 years old boys were more physically fit than 14 and 15 year olds. It was also seen that there was no significant difference between 14 and 15 year old boys. In this study conducted an age and physical fitness he found linear increase in the performance of different tests, representing different components of physical fitness, up to some critical age, beyond which only small additional increases occurred.

Aggarwal (1975) quotes that literature in any field forms the foundations upon which all the future work will be built. Study of related literature implies locality reading and evaluating reports of research as well as research of casual observation and opinion that are related to the individual’s planned research report.

Mathew’s (1973) views that once a pupil has reached a satisfactory level of fitness and has on appreciation, low fitness is vital to his full growth and development, the effect of the fitness objective is more completely released.

Loyd (1971) made a study to determine the difference between Negro and white boys measure a physical fitness. Physical fitness was
measured by administering the three sub test of AAHPER youth fitness (Sit-up, Standing broad jump and soft ball throw). He concluded that Negro boys obtained a higher mean score than white boys on gross body co-ordination (Soft ball throw) at both ninth and sixth grade levels and at the ninth and tenth grades levels. The difference was significant at in standing broad jump at both fifth and sixth and ninth and tenth level at 0.1 level of significance. Negro boys an order all physical fitness levels.

Johnson (1971) carried out a study to gain an understanding of the inter-relationship between a student’s levels of physical fitness. A further purpose was to determine if Negro students differ significantly terms of physical fitness and self concept from while students. He found out the Negro high school boys were superior to while boys in strength, cardio-vascular endurance, state in health, physical appearance, skills and secularity. A greater relationship between physical fitness and self concept was found among while than among Negro high school students.

Benham (1992) conducted a study on physical fitness curriculum modules physical fitness and fitness knowledge on elementary school children. The problem of these students was to test the viability of a curricular module that would provide teachers with a unique instructional package for promoting youth fitness and to assess its effectiveness in the middle school population.

Stueck (1992) investigated a study on physical activity patterns on high school students. The purpose of this study was to identify factors that affect the participation of high school students in physical activity. Groups were formed based on gender, major area and physical activity levels to determine if they different in fitness status, time spent in activity, attitudes towards the attraction for physical activity, estimation of ability for physical activity and physical activity group.
4. SUMMARY OF THE LITERATURES

The review of the literature helped the investigator to spot out relevant problems and parameters. Further the literature helped the investigator to from the suitable hypothesis leading to the problems. The latest literature also helped the investigator to support his findings with regard to the problem. Further he literature collected in the study will also help the research scholar understanding in the similar areas. The collected reviews were presented under the three headings such as Motor fitness and Physical fitness between rural and urban school boys, College men and women (26). Influence of socio economic status on physical, physiological and psychological variables (25) and studies on in general (8).