List of Figures

Fig. 1 Structure of O-acetyl-4-O-methylglucuronoxylan from hard wood. 10
Fig. 2 Structure of arabinoxylan from grasses. 11
Fig. 3 Evolutionary relationship among low molecular weight xylanases. 22
Fig. 4 The three-dimensional structure of the Family 11 xylanase (1XNB) from Bacillus circulans. 31
Fig. 5 The backbone of Bacillus circulans xylanase with side chains of the active site. 31
Fig. 6 Reaction mechanism by Bacillus circulans xylanase (1XNB). 34
Fig. 7 Hypothetical model for xylanase gene regulation in bacteria. 36
Fig. 8 Distribution of xylans in the different parts/stages of pulp manufacture. 41
Fig. 9 Flow chart of the steps conducted to purify xylanases from Bacillus SSP-34. 64
Fig. 10 Growth of Bacillus SSP-34 on xylan agar plates at 24, 72 and 144 hours. 78
Fig. 11 Fermentation profile of Bacillus SSP-34. 79
Fig. 12 Proposed mechanism of reducing sugar release from impure cellulose substrate by xylanase. 84
Fig. 13 Growth profile of Bacillus SSP-34 in media with different initial pH values. 87
Fig. 14 Pattern of pH change in basal media with different initial pH values (pH 7-9.5) during growth of Bacillus SSP - 34. 87
Fig. 15 Growth profile of Bacillus SSP-34 at different temperatures. 88
Fig. 16 Effect of inoculum concentration on growth and xylanase production by Bacillus SSP-34. 89
Fig. 17 Effect of agitation (100, 200 and 300 rev.min^{-1}) and working volume ratio (0.2, 0.4 and 0.6) on xylanase production by Bacillus SSP – 34. 90
Fig. 18 Xylanase production in control and modified cultural conditions by Bacillus SSP-34. 92
Fig. 19 Effect of different carbon sources on xylanase production by Bacillus SSP-34. 95
Fig. 20 Xylanase production by *Bacillus* SSP-34 in xylan, xylose and wheat bran media.

Fig. 21 Production of xylanases and cellulases in different levels of xylan, the optimal carbons source.

Fig. 22 Effect of different levels of xylan (%) on the growth profile of *Bacillus* SSP-34.

Fig. 23 Xylanase production profile on 1 % xylan medium.

Fig. 24 Induction of xylanases by the 1 % xylose medium.

Fig. 25 The production of xylanase by *Bacillus* SSP-34 in medium containing 0.5 % xylan and 0.5% glucose.

Fig. 26 Growth of *Bacillus* SSP-34 on the medium supplemented with 0.5 % xylose and 0.5 % glucose.

Fig. 27 Fermentation profile of *Bacillus* SSP-34 on medium containing 0.5 % xylan and 0.5 % xylose as the carbon source.

Fig. 28 Effect of various nitrogen sources on the production of xylanase by *Bacillus* SSP-34.

Fig. 29 Fermentative production of xylanase by *Bacillus* SSP-34 in control medium with 0.5 % yeast extract and 0.5 % peptone (1 % final concentration).

Fig. 30 Xylanase production in the medium containing 1% peptone and 1% yeast extract as nitrogen source.

Fig. 31 Production of xylanase at different levels of the selected nitrogen source (combination of yeast extract and peptone).

Fig. 32 Fermentative production of xylanase by *Bacillus* SSP-34 in the optimised nitrogen source.

Fig. 33 pH variance at different levels of optimum nitrogen source.

Fig. 34 Effect of metal ions on xylanase production and growth by *Bacillus* SSP – 34.

Fig. 35 Comparison of xylanase production in the non-optimised and optimised medium.

Fig. 36 Anion exchange chromatography, using DEAE-Sepharose CL 6B.

Fig. 37 Cation exchange chromatography using CM Sephadex.
Fig. 38 Bio GelP-100 Gel Filtration Chromatography.

Fig. 39 SDS-PAGE of xylanase prepared at different stages of purification.

Fig. 40 Determination of molecular weight of Bacillus SSP-34 xylanase.

Fig. 41 Zymogram for Crude, CM and BioGel xylanase fractions purified from Bacillus SSP-34 culture broth.

Fig. 42 Effect of temperature on crude xylanase activity.

Fig. 43 Effect of temperature on stability of xylanase.

Fig. 44 Effect of pH on xylanase activity.

Fig. 45 Effect of pH on stability of xylanase.

Fig. 46 Effect of temperature on purified xylanase.

Fig. 47 Effect of temperatures on stability of purified xylanase.

Fig. 48 Effect of pH on purified xylanase.

Fig. 49 Effect of pH on the stability of purified xylanase from Bacillus SSP-34.

Fig. 50 Lineweaver-Burk Plot for determining K_m value of xylanase from Bacillus SSP-34.

Fig 51. HPLC hydrolysis patterns of oat spelts xylan.
List of Tables

Table 1. Xylanase and cellulase production from microorganisms. 20
Table 2. Characterisation of xylanases from different microorganisms. 26
Table 3. Experimental set up to detect optimum agitation and aeration condition of Bacillus SSP-34. 56
Table 4. Different combinations of optimum nitrogen source studied. 61
Table 5. Growth profile and xylanase production by cultures from the initial screening. 75
Table 6. Comparison of cellulase and xylanase production by the selected 10 cultures. 83
Table 7. Inducers and repressors of xylanase production in reported cases. 105
Table 8. Purification of xylanase from Bacillus SSP-34. 122
Table 9. Different techniques applied in the purification of xylanases from Bacillus spp. 123
Table 10. Biobleaching experiments with Bacillus SSP-34 xylanases on Kraft pulp. 140