1 Laser Dyes and Their Applications: Recent Developments

Abstract

1.1 Introduction

1.2 Laser dyes

1.3 Development of dye laser: A brief historical background

1.3.1 Laser pumped pulsed dye lasers

1.3.2 Continuous wave dye lasers

1.3.3 Ultrashort pulse dye lasers

1.4 Recent advancements in dye lasers

1.4.1 Introduction: Solid state dye lasers

1.4.2 Inorganic sol-gel glass matrices

1.4.3 Polymer matrices

1.4.4 Hybrid materials

1.4.5 Dye doped waveguides

1.4.6 Dye doped optical fibers: Lasers and Amplifiers

1.4.7 Microcavity Lasers

1.5 Fluorescence related applications

1.6 Nonlinear properties of organic dyes

1.7 Conclusion

1.8 Present work

References

2 Photophysical, ASE and Lasing Properties of Coumarin 540

Abstract

2.1 The Photophysics of Laser dyes

2.1.1 Energy level diagram

2.1.2 Absorption and fluorescence spectral characteristics

2.1.3 Solvent effect on fluorescence spectra
3 Light Amplification in Dye Doped Solid State Polymer Matrices

Abstract

3.1 Introduction

3.2 Solid State Dye Lasers

3.3 Dye doped polymer matrices

3.4 Optical gain studies in dye doped polymer matrices

3.4.1 Amplified Spontaneous Emission

3.4.2 Gain coefficient

3.5 Experimental details

3.5.1 Fabrication of dye doped polymer matrices
3.6 Dye doped PMMA matrices
3.6.1 Gain studies
3.7 Solid State Thin Films: Preparation
3.7.1 Gain studies
3.7.2 Laser Emission
3.7.3 Laser resonant modes
3.8 Dye Doped Polystyrene Matrices
3.9 Dye doped Polyvinyl chloride films
3.10 Conclusions
References

4 Photostability of Dye Doped Polymer Matrices - A Photoacoustic Study
Abstract
4.1 Introduction
4.2 Photodegradation measurements
4.3 Photoacoustic method
4.4 Rosencwaig-Gersho Theory
4.5 Photostability investigations using PA technique
4.6 Experimental Details
4.6.1 PA studies in bulk samples
4.6.2 PA studies in dye doped polymer film samples
4.7 Conclusion
References

5 ASE and Energy Transfer Studies in Dye Mixtures
Abstract
5.1 Introduction
5.2 Different Energy Transfer Mechanisms in a d-a Pair
5.2.1 Radiative Transfer
5.2.2 Radiationless Transfer Due to Electron Exchange Interaction

5.2.3 Radiationless Transfer due to Coulombic Interaction

5.3 Importance of Fluorescence Resonance Energy transfer

5.4 Theory of Resonance Energy Transfer

5.5 Experimental Details

5.6 Results and discussions

5.6.1 ASE in C 540 — Rhodamine 6G d-a pair

5.6.2 C 540-Rhodamine B as d-a pair

5.7 Conclusions

References

6 Nonlinear characteristics of Coumarin 540

Abstract

6.1 Introduction

6.2 NLO properties of organic molecules

6.3 Nonlinear absorption (NLA)

6.4 Open aperture Z-Scan to Study NLA

6.5 Theory of open aperture z-scan technique

6.6 Experimental setup

6.7 Nonlinear absorption in C 540 dye solution

6.8 Nonlinear absorption in Dye doped polymer films

6.9 Optical limiting

6.10 Optical limiting in dye doped polymer films

6.11 Conclusion

References

7 Conclusions and future prospects

7.1 General conclusions

7.2 Future prospects