Dielectric resonators (DRs) are an inevitable component in microwave telecommunication devices and are extensively used as filters, oscillators and dielectric resonator antennas (DRAs). To meet the requirements for use in such practical applications, the materials should possess stringent properties like (i) high dielectric constant (ε_r) for miniaturization, (ii) high unloaded quality factor (Q_u) or low dielectric loss for better selectivity and (iii) low temperature coefficient of resonant frequency (τ_f) for frequency stability with thermal variations of the circuit.

Open dielectric resonators can radiate energy through their lower order modes and hence act as effective antennas. These DRAs have the advantages like reduced size, lower ohmic loss, mechanical simplicity, relatively large bandwidth, simple coupling schemes to nearly all commonly used transmission lines and different radiation characteristics using different modes of the resonator. The search for new DR materials with optimum balance of microwave dielectric properties for antenna applications and the fabrication of wide band DRAs with reasonable gain and radiation performances is one of the challenging problems in telecommunication field.

This thesis entitled “NOVEL LOW LOSS A(A_{1/4}B_{2/4}C_{1/4})O_3 DIELECTRICS AND THEIR APPLICATIONS IN BROADBAND ANTENNAS” is the outcome of a detailed investigation made on the synthesis, characterisation and microwave dielectric properties of $A(A_{1/4}B_{2/4}C_{1/4})O_3$ ($A = Ca, Ba, Sr, Mg, Zn, Ni, Co; B = Nb, Ta; C = Ti, Zr and Hf$) ceramics, tailoring their dielectric properties by different techniques, verification of the experimental results using theoretical modelling and fabrication of wide band antennas using the developed DR materials. Accordingly these results are classified into 9 chapters in the thesis.

Chapter 1 is a general introduction about low loss dielectric resonator materials, and a brief survey of their technological and industrial applications, especially as DRAs. A consolidated introduction about DRAs, their merits over other conventional patch antennas and the major developments in this area of research have been discussed.
Chapter 2 illustrates the experimental method of conventional solid-state ceramic route for the synthesis of DRs. The information about instrumental techniques adopted for the structural, microstructural and microwave dielectric properties of DRs have also been summarised. The design and measurement methods employed for the fabrication of DRAs have been described in this chapter. Furthermore, a brief introduction about the theoretical modelling adopted for checking the validity of experimental results has been discussed. The experimental set up for measuring Q_m, ε_r and DRA geometry was modelled using a complete software tool for 3D electromagnetic analysis (Micro - stripes 6.5). The time domain solver based on the Transmission Line Matrix (TLM) technique was adopted which allowed an efficient way of solving Maxwell's equations without suffering the drawbacks of other techniques such as FDTD and finite elements.

Chapter 3 presents the preparation, characterization and microwave dielectric properties of Ca$_5$B$_2$TiO$_{12}$ (B = Nb, Ta) [or Ca(Ca$_{1/4}$B$_{2/4}$Ti$_{1/4}$)O$_3$ in perovskite form] ceramics. The synthesizing conditions were optimised for best dielectric properties. Two novel DR materials were reported in which, Ca$_5$Nb$_2$TiO$_{12}$ has $\varepsilon_r = 48$, $Q_m x f >$ 26000 GHz and $\tau_f = +40$ ppm/$^\circ$C, whereas Ca$_5$Ta$_2$TiO$_{12}$ has $\varepsilon_r = 38$, $Q_m x f >$ 33000 GHz and $\tau_f = +10$ ppm/$^\circ$C. The effects of various dopants on the dielectric properties of these ceramics have been investigated. It is found that dopants such as MgO, ZnO, CuO, Co$_3$O$_4$, Sb$_2$O$_3$, Cr$_2$O$_3$, In$_2$O$_3$ and SnO$_2$ improve the microwave dielectric properties. A correlation between the microwave dielectric properties of the matrix and ionic radii of the dopant has been established.

The effect of glass additives on the sintering temperature, density and microwave dielectric properties of Ca$_5$B$_2$TiO$_{12}$ [B = Nb, Ta] ceramics have been described in Chapter 4. It is found that small amount (0.1 wt %) addition of glasses improved the density, dielectric constant and quality factor. Al$_2$O$_3$ and SiO$_2$ glasses are more effective in reducing τ_f whereas B$_2$O$_3$ based glasses better aids the lowering of sintering temperature. Higher wt % of all glasses deteriorated the density and microwave dielectric properties of these ceramics though they effectively reduced the sintering temperature.

Chapter 5 deals with tailoring the microwave dielectric properties of Ca$_5$Nb$_2$TiO$_{12}$ by partial substitution of Ca$^{2+}$ with Ba, Sr, Mg, Zn, Ni, and Co and Ti$^{4+}$ with Zr and Hf. Consequently, solid solutions such as Ca$_{5-x}$Ba$_x$Nb$_2$TiO$_{12}$, Ca$_{5-x}$Sr$_x$Nb$_2$TiO$_{12}$, Ca$_{5-x}$
Mg$_x$Nb$_2$TiO$_{12}$, Ca$_{5-x}$Zn$_x$Nb$_2$TiO$_{12}$, Ca$_{5-x}$Ni$_x$Nb$_2$TiO$_{12}$, Ca$_{5-x}$Co$_x$Nb$_2$TiO$_{12}$, Ca$_5$Nb$_2$Ti$_{1-x}$ZrO$_{12}$, Ca$_3$Nb$_2$Ti$_{1-x}$HfO$_{12}$ have been prepared and characterised. It is found that Ba and Sr substitution increased ε_r and τ_f whereas all other compounds form temperature stable compositions for $0 < x \leq 1$. Moreover the quality factor increased and dielectric constant decreased with x. The experimental values were compared with that obtained by simulation. Excellent agreement between experiment and theory was observed.

Tuning of microwave dielectric properties of Ca$_5$Ta$_2$TiO$_{12}$ ceramics by solid solution formations like Ca$_{5-x}$Ba$_x$Ta$_2$TiO$_{12}$, Ca$_{5-x}$Sr$_x$Ta$_2$TiO$_{12}$, Ca$_{5-x}$Mg$_x$Ta$_2$TiO$_{12}$, Ca$_{5-x}$Zn$_x$Ta$_2$TiO$_{12}$, Ca$_{5-x}$Ni$_x$Ta$_2$TiO$_{12}$, Ca$_{5-x}$Co$_x$Ta$_2$TiO$_{12}$, Ca$_5$Ta$_2$Ti$_{1-x}$Zr$_x$O$_{12}$ and Ca$_5$Ta$_2$Ti$_{1-x}$Hf$_x$O$_{12}$ are illustrated in Chapter 6. As in the case of their niobium analogue Ba and Sr substitution increased the ε_r and τ_f with gradual decrease in quality factor. Mg, Zn, Ni, Co, Ti and Zr substitution yielded temperature stable ceramics with slightly less ε_r and high quality factor compared with the parent material. The experimental data is compared with simulated results and a very good agreement is observed between the two.

The results of experimental investigation made on DR loaded microstrip patch antennas are given in Chapter 7. The effect of ε_r and resonant frequency of DR on the gain, bandwidth and radiation performance of microstrip patch antennas have been studied. Cylindrical DRs of ε_r varying from 9 to 92 were loaded over the patch antenna. It was observed that ε_r in the range 40 – 50 was best suited for bandwidth enhancement of antennas. When a dielectric resonator of $\varepsilon_r = 48$ and resonant frequency close to that of the microstrip antenna was loaded over the patch, a five fold increase in the percentage bandwidth of the antenna was observed without much affecting its gain and radiation performance. A much more improved bandwidth was obtained when the dielectric resonator was placed on the feed line close to the patch antenna.

Chapter 8 probes the fabrication of broadband dielectric resonator antennas with different geometries. A compromise between size, operating frequency and antenna performance can be made only if the ε_r of the DR material is around 50. Hence cylindrical, elliptical and rectangular DRAs have been fabricated using Ca$_3$Nb$_2$TiO$_{12}$ ceramics ($\varepsilon_r = 48$) and excited with microstripline mechanisms. The experimental results were compared with simulated values and excellent agreement was observed. Cylindrical DRAs have higher gain and bandwidth compared with other two geometries. It was
observed that the antenna as well as feed line geometry plays a major role in controlling the gain, radiation performance and bandwidth. With this view the effects of feed line geometry on the antenna characteristics have also been investigated. The antenna makes a better performance with the branching of feed line.

The ninth chapter gives the conclusion of the thesis and scope for future work. It is proposed to synthesize Ca$_3$B$_2$TiO$_{12}$ (B = Nb, Ta) ceramics at low temperatures through chemical methods and development of single crystals with improved performance. Fabrication of DRA array using temperature stable DRs, miniaturized ceramic antennas employing LTCC technology and beam steerable DRAs using tunable dielectrics are proposed to improve antenna performance.
ACKNOWLEDGEMENTS

I present this report, in the name of God, the Almighty, who kindly showers HIS unperturbed concern, grace and blessings throughout my life.

It is with great pleasure that I place on record my deepest sense of gratitude to Dr. M. T. Sebastian, Scientist, Regional Research Laboratory, Trivandrum, for his efficient guidance, creative discussions and constant encouragement provided to me. His wide knowledge, serious research attitude and enthusiasm in work deeply impressed me.

This work could not have been completed, without the creative suggestions and great help rendered by my co-supervisor Prof. P. Mohanan, Department of Electronics, Cochin University of Science and Technology (CUSAT), Kochi. I am very much indebted to his efficient guidance, constant encouragement and moral support.

I am grateful to Proji T. K. Chandrasekhar, Director, Regional Research Laboratory (RRL), Trivandrum, for kindly providing the facilities.

My sincere gratitude is also due to Dr. G. Vijay Nair, Dr. K. G. Satyanarayana, Prof. Javed Iqbal and Dr. B. C. Pai (Former Directors, RRL, Trivandrum) for their encouragement during the period of my research.

I am thankful to Prof. K. Vasudevan and Prof. K. G. Balakrishnan (Present and former Heads, Department of Electronics, CUSAT) for extending the microwave laboratory facilities for antenna characterization. I am also thankful to Dr. C. K. Anandan for his kind co-operation and help during the microwave measurements.

The invaluable support and immense favours provided by Dr. Manoj Raama Varma, Scientist, RRL, Trivandrum, is highly acknowledged.

I would like to thank all my colleagues and friends in the Ceramic Technology Division of RRL, especially Dr. N. Santha, Mr. L. A. Khalam, Ms. Anjana Gopakumar, Mr. G. Subodh, Mr. P. C. Rajath Varma, Mr. S. Biju, Ms. R. Rejini, Ms. Sherin Thomas, Ms. B. R. Priya Rani, Ms. Asha Pramod and Ms. L. Shamla who helped me in many ways.

The creative suggestions and valuable advices given by my seniors in the lab, Dr. K. P. Surendran (IISc, Bangalore), Dr. I. N. Jawahar, Dr. R. Ratheesh (Scientist, C-MET, Thrissur), Dr. H. Sreemoolanadhan (Scientist, VSSC) and Dr. Sam Solomon are thankfully remembered.

I wish to express my heartiest thanks to all the present and past members of microwave electronics research lab, CUSAT, Kochi, who extended their support and help to me. The favours rendered by Mr. Rohith, Mr. Gijomon, Mr. Anupam, Mr. Shynu, Mr. Manoj, Mr. Praveen, Ms. Sreedevi, Ms. Suma, Ms. Mridula, Ms. Binu Paul and Ms. Lethakumari are greatly acknowledged.
I also wish to express my sincere thanks to Dr. R. Jose, Dr. Asha Mary John, Mr. M. Sankar and Mr. Senthil Kumar, former members of Ceramic Technology Division, for their help and support.

I am indebted to Dr. K. G. K. Warrier, Dr. U. Shyama Prasad, Prof. Jacob Koshy, Dr. Jose James, Dr. K. Ravindran Nair and Dr. Peter Koshy for their help given during the course of this work.

I am thankful to Mr. K. V. Oonnikrishnan Nair, Mr. P. Gurusamy, Mr. Prabhakar Rao, Mr. P. Mukundan and Mr. Sreekumar (SCTIMST) for extending the XRD and SEM facility for this research work.

The help provided by Prof. R. L. Moreira and Dr. Anderson Dias, UFMG, Brazil, in the recording and analysis of Laser Raman and FTIR spectra of dielectrics discussed in this thesis is sincerely acknowledged.

My special thanks are due to the Flomerics India Pvt. Ltd., Bangalore for providing an evaluation version of Micro Stripes 6.5, without which the simulation work described in this thesis could not have been performed.

The inspiration and constant encouragement from my teachers, especially Fr. John Kuzhimannil, Ms. V. Vasanthy and Dr. Sebastian Mathew are always remembered.

The financial support from Department of Science and Technology and Council of Scientific and Industrial Research, Government of India, New Delhi, is gratefully acknowledged.

I could never forget the invaluable support provided by my wife during the research tenure. She stood with me in my thick and thin, provided a lot of encouragements when it needed me most and her love, understandability and adjustability throughout these years helped me in the successful and comfortable completion of this work.

I owe an unlimited debt of gratitude to my parents and other family members who have enlighten my paths with their invaluable advice, support and encouragement that contributed a lot to shape my career. I also like to express my deepest sense of gratitude to my parents-in-law for the timely help and moral support.

Last but not least, I want to express my appreciation to all those who have helped me in many ways for the successful completion of this work. I remember that the care and support from all these people gave me the confidence, their encouragement means so much to me throughout those countless hard-working days and nights.

P. V. Bijumon