LIST OF FIGURES

1.1 Classification of antibiotics ...24
1.2 Overview of Mechanism of β- lactam antibiotics ...27
1.3 Labtronic Double Beam Spectrophotometer ...31
1.4 Schematic diagram of UV Double Beam Spectrophotometer36
1.5 HPLC Instrument ..43
1.6 Schematic diagram of types of HPLC ..46
1.7 Labtronic HPLC (Model 3201) ...47
1.8 Method Development Chart ...49
1.9 The Theoretical Plate Exemplary of Chromatography53
1.10 A plot of plate height vs. average linear of M. Phase’ velocity 35
1.11 Allergic reactions of beta lactum antibiotics ...73
3.1 Sampling on HPLC ...133
3.2 Accessories for preparing HPLC Sample ..133
3.3 Sampling on Double Beam Spectrophotometer ..134
3.4 IR-Spectra of Ceftriaxone sodium ..137
3.5: UV Spectrum of Ceftriaxone sodium ...139
3.6: Chromatogram of ceftriaxone sodium at pH 6.5 ..142
3.7: Chromatogram of ceftriaxone sodium in Hypersil BDS C\textsubscript{18} column 144
3.8: Chromatogram of acid (0.1NHCL) degraded preparation (API)168
3.9: Chromatogram of Base (0.1NAOH) degraded preparation (API)169
3.10 Chromatogram of oxidative (5%) degraded preparation (API)170
3.11 Chromatogram of thermal degraded preparation (API)171
3.12: The chromatogram of standard preparation ..174
3.13: Peak purity spectra of Ceftriaxone sodium depicting its purity176
3.14: Chromatogram of specificity showing sample spiked with impurity...177
3.15: Linearity plots for Ceftriaxone sodium.................................183
3.16UV Spectrum of 12 µg/ml of Ceftriaxone sodium Standard Solution (λ_{max} 260nm)...192
3.17Linear Calibration Curve for Ceftriaxone sodium......................193
3.18Chemical structure of Cefpodoxime Proetil200
3.19Method validation chromatograms of Cefpodoxime proetil........208
3.20Tablet solution chromatogram...209
3.21 Blank Solution Chromatogram...209
3.22Alkali hydrolysis blank chromatogram210
3.23Alkali hydrolysis degradation of tablet chromatogram..............210
3.24Oxidative blank chromatogram...211
3.25Oxidative degradation of tablet chromatogram.........................211
3.26Acid hydrolysis blank chromatogram212
3.27: Acid hydrolysis degradation of tablet chromatogram...............212
3.28: Thermal degradation of tablet chromatogram........................213
3.29: UV short degradation of tablet chromatogram.......................213
3.30: UV short degradation of tablet chromatogram......................214
3.31: Cefpodoxime peak purity spectra in base hydrolysis degradation...214
3.32: Cefpodoxime peak purity spectra in oxidation degradation........215
3.33Cefpodoxime peak purity spectra in acid hydrolysis degradation...215
3.34: Cefpodoxime peak purity spectra in thermal degradation.........216
3.35:Cefpodoxime peak purity spectra in UV short degradation........216
3.36Cefpodoxime peak purity spectra in UV-long degradation217
3.37Chemical structure of Cefotaxime Sodium221
3.63: Oxidative degradation of tablet ... 241
3.64: Thermal degradation of tablet chromatogram 241
3.65: Blank for acidic degradation ... 242
3.66: Acidic degradation of tablet chromatogram 242
3.67: Chemical structure of Cefperazone 246
3.57: Tablet sample solution chromatogram 248
3.58: Diluent chromatogram ... 248
3.59: Standard solution chromatogram ... 249
3.60: Blank alkali hydrolysis chromatogram 249
3.61: Alkali hydrolysis degradation of tablet chromatogram 250
3.62: Blank for oxidative degradation .. 250
3.63: Oxidative degradation of tablet .. 251
3.64: Thermal degradation of tablet chromatogram 251
3.65: Blank for acidic degradation ... 252
3.66: Acidic degradation of tablet chromatogram 252